Classical and Quantum Superintegrability of Stackel Systems

被引:4
|
作者
Blaszak, Maciej [1 ]
Marciniak, Krzysztof [2 ]
机构
[1] Adam Mickiewicz Univ, Div Math Phys, Fac Phys, Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, Linkoping, Sweden
关键词
Hamiltonian systems; classical and quantum superintegrable systems; Stackel systems; Hamilton-Jacobi theory; Stackel transform; INTEGRABLE HAMILTONIAN-SYSTEMS; DIMENSIONAL CURVED SPACES; MAXIMAL SUPERINTEGRABILITY; BENENTI SYSTEMS;
D O I
10.3842/SIGMA.2017.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss maximal superintegrability of both classical and quantum Stackel systems. We prove a sufficient condition for a flat or constant curvature Stackel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stackel transform to preserve maximal superintegrability and we apply this condition to our class of Stackel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Quantum models of classical systems
    Hajicek, P.
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [32] Quantum Ideas for Classical Systems
    Fabio Bagarello
    Francesco Gargano
    Acta Applicandae Mathematicae, 2014, 132 : 27 - 39
  • [33] Quantum Ideas for Classical Systems
    Bagarello, Fabio
    Gargano, Francesco
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 27 - 39
  • [34] Classical command of quantum systems
    Reichardt, Ben W.
    Unger, Falk
    Vazirani, Umesh
    NATURE, 2013, 496 (7446) : 456 - 460
  • [35] Classical command of quantum systems
    Ben W. Reichardt
    Falk Unger
    Umesh Vazirani
    Nature, 2013, 496 : 456 - 460
  • [36] Duality between integrable Stackel systems
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (45): : 7965 - 7982
  • [37] Flat coordinates of flat Stackel systems
    Marciniak, Krzysztof
    Blaszak, Maciej
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 706 - 716
  • [38] Classical and quantum correlative capacities of quantum systems
    Li, Nan
    Luo, Shunlong
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [39] STACKEL REPRESENTATIONS OF STATIONARY KDV SYSTEMS
    Blaszak, Maciej
    Szablikowski, Blazej m.
    Marciniak, Krzysztof
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 92 (03) : 323 - 346
  • [40] Homogeneous Stackel-type systems
    Tsyganov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (01) : 377 - 395