Classical and Quantum Superintegrability of Stackel Systems

被引:4
|
作者
Blaszak, Maciej [1 ]
Marciniak, Krzysztof [2 ]
机构
[1] Adam Mickiewicz Univ, Div Math Phys, Fac Phys, Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, Linkoping, Sweden
关键词
Hamiltonian systems; classical and quantum superintegrable systems; Stackel systems; Hamilton-Jacobi theory; Stackel transform; INTEGRABLE HAMILTONIAN-SYSTEMS; DIMENSIONAL CURVED SPACES; MAXIMAL SUPERINTEGRABILITY; BENENTI SYSTEMS;
D O I
10.3842/SIGMA.2017.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss maximal superintegrability of both classical and quantum Stackel systems. We prove a sufficient condition for a flat or constant curvature Stackel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stackel transform to preserve maximal superintegrability and we apply this condition to our class of Stackel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] SUPERINTEGRABILITY IN CLASSICAL MECHANICS
    EVANS, NW
    PHYSICAL REVIEW A, 1990, 41 (10): : 5666 - 5676
  • [12] Flat minimal quantizations of Stackel systems and quantum separability
    Blaszak, Maciej
    Domanski, Ziemowit
    Silindir, Burcu
    ANNALS OF PHYSICS, 2014, 351 : 152 - 165
  • [13] Miura maps for Stackel systems
    Marciniak, Krzysztof
    Blaszak, Maciej
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [14] Separable systems of Stackel
    Eisenhart, LP
    ANNALS OF MATHEMATICS, 1934, 35 : 284 - 305
  • [15] Generalized Stackel systems
    Blaszak, Maciej
    Sergyeyev, Artur
    PHYSICS LETTERS A, 2011, 375 (27) : 2617 - 2623
  • [16] Separable quantizations of Stackel systems
    Blaszak, Maciej
    Marciniak, Krzysztof
    Domanski, Ziemowit
    ANNALS OF PHYSICS, 2016, 371 : 460 - 477
  • [17] THE LAGRANGIAN THEORY OF STACKEL SYSTEMS
    BROUCKE, R
    CELESTIAL MECHANICS, 1981, 25 (02): : 185 - 193
  • [18] On classical, fuzzy classical, quantum, and fuzzy quantum systems
    Seising, Rudolf
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1338 - 1342
  • [19] Cubic integrals of motion and quantum superintegrability
    Gravel, S
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 53 - 63
  • [20] Stackel systems in conformal Euclidean space
    Eisenhart, LP
    ANNALS OF MATHEMATICS, 1935, 36 : 57 - 70