Classical and Quantum Superintegrability of Stackel Systems

被引:4
|
作者
Blaszak, Maciej [1 ]
Marciniak, Krzysztof [2 ]
机构
[1] Adam Mickiewicz Univ, Div Math Phys, Fac Phys, Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, Linkoping, Sweden
关键词
Hamiltonian systems; classical and quantum superintegrable systems; Stackel systems; Hamilton-Jacobi theory; Stackel transform; INTEGRABLE HAMILTONIAN-SYSTEMS; DIMENSIONAL CURVED SPACES; MAXIMAL SUPERINTEGRABILITY; BENENTI SYSTEMS;
D O I
10.3842/SIGMA.2017.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss maximal superintegrability of both classical and quantum Stackel systems. We prove a sufficient condition for a flat or constant curvature Stackel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stackel transform to preserve maximal superintegrability and we apply this condition to our class of Stackel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Superintegrable deformations of superintegrable systems: Quadratic superintegrability and higher-order superintegrability
    Ranada, Manuel F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [42] Quantum superintegrability and exact solvability in n dimensions
    Rodríguez, MA
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) : 1309 - 1322
  • [43] Davydov model: The quantum, mixed quantum-classical, and full classical systems
    CruzeiroHansson, L
    Takeno, S
    PHYSICAL REVIEW E, 1997, 56 (01) : 894 - 906
  • [44] Classical systems, standard quantum systems, and mixed quantum systems in Hilbert space
    Wan, KK
    Bradshaw, J
    Trueman, C
    Harrison, FE
    FOUNDATIONS OF PHYSICS, 1998, 28 (12) : 1739 - 1783
  • [45] Classical Systems, Standard Quantum Systems, and Mixed Quantum Systems in Hilbert Space
    K. Kong Wan
    Jason Bradshaw
    Colin Trueman
    F. E. Harrison
    Foundations of Physics, 1998, 28 : 1739 - 1783
  • [46] Birkhoff normalization and superintegrability of Hamiltonian systems
    Ito, Hidekazu
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1853 - 1880
  • [47] Superintegrability in classical mechanics: A contemporary approach to Bertrand's theorem
    SalasBrito, AL
    NunezYepez, HN
    MartinezYRomero, RP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 271 - 276
  • [48] Quantum dynamics in open quantum-classical systems
    Kapral, Raymond
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (07)
  • [49] RELAXATION PHENOMENA IN CLASSICAL AND QUANTUM SYSTEMS
    Spagnolo, B.
    Caldara, P.
    La Cognata, A.
    Augello, G.
    Valenti, D.
    Fiasconaro, A.
    Dubkov, A. A.
    Falci, G.
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1169 - 1189
  • [50] CLASSICAL EQUATIONS FOR QUANTUM-SYSTEMS
    GELLMANN, M
    HARTLE, JB
    PHYSICAL REVIEW D, 1993, 47 (08): : 3345 - 3382