Classical and Quantum Superintegrability of Stackel Systems

被引:4
|
作者
Blaszak, Maciej [1 ]
Marciniak, Krzysztof [2 ]
机构
[1] Adam Mickiewicz Univ, Div Math Phys, Fac Phys, Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, Linkoping, Sweden
关键词
Hamiltonian systems; classical and quantum superintegrable systems; Stackel systems; Hamilton-Jacobi theory; Stackel transform; INTEGRABLE HAMILTONIAN-SYSTEMS; DIMENSIONAL CURVED SPACES; MAXIMAL SUPERINTEGRABILITY; BENENTI SYSTEMS;
D O I
10.3842/SIGMA.2017.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss maximal superintegrability of both classical and quantum Stackel systems. We prove a sufficient condition for a flat or constant curvature Stackel system to be maximally superintegrable. Further, we prove a sufficient condition for a Stackel transform to preserve maximal superintegrability and we apply this condition to our class of Stackel systems, which yields new maximally superintegrable systems as conformal deformations of the original systems. Further, we demonstrate how to perform the procedure of minimal quantization to considered systems in order to produce quantum superintegrable and quantum separable systems.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] On Reciprocal Equivalence of Stackel Systems
    Blaszak, Maciej
    Marciniak, Krzysztof
    STUDIES IN APPLIED MATHEMATICS, 2012, 129 (01) : 26 - 50
  • [22] The Stackel systems and algebraic curves
    Tsiganov, AV
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (01) : 279 - 298
  • [23] Maximal superintegrability of Benenti systems
    Blaszak, M
    Sergyeyev, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : L1 - L5
  • [24] Lie symmetries and superintegrability in quantum mechanics
    Sheftel, MB
    Tempesta, P
    Winternitz, P
    PHYSICS OF ATOMIC NUCLEI, 2002, 65 (06) : 1144 - 1148
  • [25] Lie symmetries and superintegrability in quantum mechanics
    M. B. Sheftel
    P. Tempesta
    P. Winternitz
    Physics of Atomic Nuclei, 2002, 65 : 1144 - 1148
  • [26] Quantum physical systems as classical systems
    Cassa, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (11) : 5143 - 5149
  • [27] A note on superintegrability of the quantum Calogero model
    Gonera, C
    PHYSICS LETTERS A, 1998, 237 (06) : 365 - 368
  • [28] Classification of the quantum two-dimensional superintegrable systems with quadratic integrals and the Stackel transforms
    Daskaloyannis, C.
    Tanoudis, Y.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 853 - 861
  • [29] Classical computation with quantum systems
    Delaney, P
    Greer, JC
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2065): : 117 - 135
  • [30] Classical evolution in quantum systems
    Sperling, J.
    Walmsley, I. A.
    PHYSICA SCRIPTA, 2020, 95 (06)