Duality between integrable Stackel systems

被引:30
|
作者
Tsiganov, AV [1 ]
机构
[1] St Petersburg State Univ, Inst Phys, Dept Math & Computat Phys, St Petersburg 198904, Russia
来源
关键词
D O I
10.1088/0305-4470/32/45/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Canonical transformations of the extended phase space are applied to the integrable Stackel systems. All these transformations may be associated with an ambiguity of the Abel map on the corresponding hyperelliptic curve. For some Stackel systems with two degrees of freedom the 2 x 2 Lax representations and the dynamical r-matrix algebras are constructed.
引用
收藏
页码:7965 / 7982
页数:18
相关论文
共 50 条
  • [1] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [2] STACKEL-EQUIVALENT INTEGRABLE HAMILTONIAN-SYSTEMS
    BOYER, CP
    KALNINS, EG
    MILLER, W
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) : 778 - 797
  • [3] Duality for discrete integrable systems
    Quispel, GRW
    Capel, HW
    Roberts, JAG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (18): : 3965 - 3980
  • [4] Duality in integrable systems and gauge theories
    Fock, V
    Gorsky, A
    Nekrasov, N
    Rubtsov, V
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (07):
  • [5] Duality for discrete integrable systems II
    van der Kamp, Peter H.
    Quispel, G. R. W.
    Zhang, Da-Jun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (36)
  • [6] SELF-DUALITY AND INTEGRABLE SYSTEMS
    OHYAMA, Y
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (04) : 701 - 722
  • [7] Generalized Stackel transform and reciprocal transformations for finite-dimensional integrable systems
    Sergyeyev, Artur
    Blaszak, Maciej
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (10)
  • [8] COUPLING-CONSTANT METAMORPHOSIS AND DUALITY BETWEEN INTEGRABLE HAMILTONIAN-SYSTEMS
    HIETARINTA, J
    GRAMMATICOS, B
    DORIZZI, B
    RAMANI, A
    PHYSICAL REVIEW LETTERS, 1984, 53 (18) : 1707 - 1710
  • [9] From Stackel systems to integrable hierarchies of PDE's: Benenti class of separation relations
    Blaszak, M
    Marciniak, K
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
  • [10] Canonical transformations of the extended phase space, Toda lattices and the Stackel family of integrable systems
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4169 - 4182