STRICT CONVEXITY OF THE LIMIT SHAPE IN FIRST-PASSAGE PERCOLATION

被引:2
|
作者
Lalley, Steven P. [1 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词
Shape theorem; first-passage percolation; oriented percolation;
D O I
10.1214/ECP.v8-1089
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sufficient conditions are given for the strict convexity of the limit shape in standard first passage percolation. These conditions involve (1) asymptotic "straightness" of the geodesics, and (2) existence of mean-zero limit distributions for the first-passage times.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 50 条
  • [11] Inhomogeneous first-passage percolation
    Ahlberg, Daniel
    Damron, Michael
    Sidoravicius, Vladas
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [12] Fluctuations in first-passage percolation
    Sosoe, Philippe
    RANDOM GROWTH MODELS, 2018, 75 : 69 - 93
  • [13] Divergence of shape fluctuation for general distributions in first-passage percolation
    Nakajima, Shuta
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 782 - 791
  • [14] A central limit theorem for ''critical'' first-passage percolation in two dimensions
    Kesten, H
    Zhang, Y
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (02) : 137 - 160
  • [15] A central limit theorem for “critical” first-passage percolation in two dimensions
    Harry Kesten
    Yu Zhang
    Probability Theory and Related Fields, 1997, 107 : 137 - 160
  • [16] Limiting shape for first-passage percolation models on random geometric graphs
    Coletti, Cristian F.
    De Lima, Lucas R.
    Hinsen, Alexander
    Jahnel, Benedikt
    Valesin, Daniel
    JOURNAL OF APPLIED PROBABILITY, 2023, 60 (04) : 1367 - 1385
  • [17] Exact limiting shape for a simplified model of first-passage percolation on the plane
    Seppalainen, T
    ANNALS OF PROBABILITY, 1998, 26 (03): : 1232 - 1250
  • [18] Euclidean models of first-passage percolation
    C. Douglas Howard
    Charles M. Newman
    Probability Theory and Related Fields, 1997, 108 : 153 - 170
  • [19] Euclidean models of first-passage percolation
    Howard, CD
    Newman, CM
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 153 - 170
  • [20] Subdiffusive concentration in first-passage percolation
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 27