A central limit theorem for “critical” first-passage percolation in two dimensions

被引:0
|
作者
Harry Kesten
Yu Zhang
机构
[1] Department of Mathematics,
[2] White Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA 2 (e-mail: kesten@math.cornell.edu) ,undefined
[7] Department of Mathematics,undefined
[8] University of Colorado,undefined
[9] Colorado Springs,undefined
[10] CO 80933,undefined
[11] USA (e-mail: yzhang@vision.uccs.edu) ,undefined
来源
关键词
Mathematics Subject Classification (1991): 60K35; 60F05; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
Consider (independent) first-passage percolation on the edges of ℤ2. Denote the passage time of the edge e in ℤ2 by t(e), and assume that P{t(e) = 0} = 1/2, P{0<t(e)<C0} = 0 for some constant C0>0 and that E[tδ(e)]<∞ for some δ>4. Denote by b0,n the passage time from 0 to the halfplane {(x,y): x ≧ n}, and by T(0,nu) the passage time from 0 to the nearest lattice point to nu, for u a unit vector. We prove that there exist constants 0<C1, C2<∞ and γn such that C1(log n)1/2≦γn≦ C2(log n)1/2 and such that γn−1[b0,n−Eb0,n] and (√ 2γn)−1[T(0,nu) − ET(0,nu)] converge in distribution to a standard normal variable (as n →∞, u fixed).
引用
收藏
页码:137 / 160
页数:23
相关论文
共 50 条