A central limit theorem for “critical” first-passage percolation in two dimensions

被引:0
|
作者
Harry Kesten
Yu Zhang
机构
[1] Department of Mathematics,
[2] White Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA 2 (e-mail: kesten@math.cornell.edu) ,undefined
[7] Department of Mathematics,undefined
[8] University of Colorado,undefined
[9] Colorado Springs,undefined
[10] CO 80933,undefined
[11] USA (e-mail: yzhang@vision.uccs.edu) ,undefined
来源
关键词
Mathematics Subject Classification (1991): 60K35; 60F05; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
Consider (independent) first-passage percolation on the edges of ℤ2. Denote the passage time of the edge e in ℤ2 by t(e), and assume that P{t(e) = 0} = 1/2, P{0<t(e)<C0} = 0 for some constant C0>0 and that E[tδ(e)]<∞ for some δ>4. Denote by b0,n the passage time from 0 to the halfplane {(x,y): x ≧ n}, and by T(0,nu) the passage time from 0 to the nearest lattice point to nu, for u a unit vector. We prove that there exist constants 0<C1, C2<∞ and γn such that C1(log n)1/2≦γn≦ C2(log n)1/2 and such that γn−1[b0,n−Eb0,n] and (√ 2γn)−1[T(0,nu) − ET(0,nu)] converge in distribution to a standard normal variable (as n →∞, u fixed).
引用
收藏
页码:137 / 160
页数:23
相关论文
共 50 条
  • [41] Batch queues, reversibility and first-passage percolation
    Martin, James B.
    QUEUEING SYSTEMS, 2009, 62 (04) : 411 - 427
  • [42] Batch queues, reversibility and first-passage percolation
    James B. Martin
    Queueing Systems, 2009, 62 : 411 - 427
  • [43] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [44] UNIVERSALITY OF THE TIME CONSTANT FOR 2D CRITICAL FIRST-PASSAGE PERCOLATION
    Damron, Michael
    Hanson, Jack
    Lam, Wai -Kit
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (03): : 1701 - 1731
  • [45] Superlinearity of Geodesic Length in 2D Critical First-Passage Percolation
    Damron, Michael
    Tang, Pengfei
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 101 - 122
  • [46] Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation
    Michael Damron
    Jack Hanson
    Communications in Mathematical Physics, 2014, 325 : 917 - 963
  • [47] Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation
    Damron, Michael
    Hanson, Jack
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (03) : 917 - 963
  • [48] Local Neighbourhoods for First-Passage Percolation on the Configuration Model
    Dereich, Steffen
    Ortgiese, Marcel
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (3-4) : 485 - 501
  • [49] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    BERNOULLI, 2022, 28 (01) : 255 - 276
  • [50] Differentiability at the edge of the percolation cone and related results in first-passage percolation
    Auffinger, Antonio
    Damron, Michael
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) : 193 - 227