A central limit theorem for “critical” first-passage percolation in two dimensions

被引:0
|
作者
Harry Kesten
Yu Zhang
机构
[1] Department of Mathematics,
[2] White Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA 2 (e-mail: kesten@math.cornell.edu) ,undefined
[7] Department of Mathematics,undefined
[8] University of Colorado,undefined
[9] Colorado Springs,undefined
[10] CO 80933,undefined
[11] USA (e-mail: yzhang@vision.uccs.edu) ,undefined
来源
关键词
Mathematics Subject Classification (1991): 60K35; 60F05; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
Consider (independent) first-passage percolation on the edges of ℤ2. Denote the passage time of the edge e in ℤ2 by t(e), and assume that P{t(e) = 0} = 1/2, P{0<t(e)<C0} = 0 for some constant C0>0 and that E[tδ(e)]<∞ for some δ>4. Denote by b0,n the passage time from 0 to the halfplane {(x,y): x ≧ n}, and by T(0,nu) the passage time from 0 to the nearest lattice point to nu, for u a unit vector. We prove that there exist constants 0<C1, C2<∞ and γn such that C1(log n)1/2≦γn≦ C2(log n)1/2 and such that γn−1[b0,n−Eb0,n] and (√ 2γn)−1[T(0,nu) − ET(0,nu)] converge in distribution to a standard normal variable (as n →∞, u fixed).
引用
收藏
页码:137 / 160
页数:23
相关论文
共 50 条
  • [21] A GUE central limit theorem and universality of directed first and last passage site percolation
    Baik, J
    Suidan, TM
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (06) : 325 - 337
  • [22] Coexistence in two-type first-passage percolation models
    Garet, O
    Marchand, R
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A): : 298 - 330
  • [23] Positive Temperature Versions of Two Theorems on First-Passage Percolation
    Sodin, Sasha
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 441 - 453
  • [24] Euclidean models of first-passage percolation
    C. Douglas Howard
    Charles M. Newman
    Probability Theory and Related Fields, 1997, 108 : 153 - 170
  • [25] Euclidean models of first-passage percolation
    Howard, CD
    Newman, CM
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 153 - 170
  • [26] Subdiffusive concentration in first-passage percolation
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 27
  • [27] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237
  • [28] THE SIZE OF THE BOUNDARY IN FIRST-PASSAGE PERCOLATION
    Damron, Michael
    Hanson, Jack
    Lam, Wai-Kit
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (05): : 3184 - 3214
  • [29] Large deviations in first-passage percolation
    Chow, Y
    Zhang, Y
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1601 - 1614
  • [30] SUPERCRITICAL BEHAVIORS IN FIRST-PASSAGE PERCOLATION
    ZHANG, Y
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 59 (02) : 251 - 266