MULTILEVEL MONTE CARLO FINITE ELEMENT METHODS FOR STOCHASTIC ELLIPTIC VARIATIONAL INEQUALITIES

被引:11
|
作者
Kornhuber, Ralf [1 ]
Schwab, Christoph [2 ]
Wolf, Maren-Wanda [1 ]
机构
[1] FU Berlin, FB Math & Informat, Inst Math, D-14195 Berlin, Germany
[2] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; CONSERVATIVE TRANSPORT; RANDOM-COEFFICIENTS; MULTIGRID METHODS; CONVERGENCE RATE; ADDITIVE NOISE; APPROXIMATION; SIMULATION; PDES; FLOW;
D O I
10.1137/130916126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multilevel Monte Carlo finite element methods (MLMC-FEMs) for the solution of stochastic elliptic variational inequalities are introduced, analyzed, and numerically investigated. Under suitable assumptions on the random diffusion coefficient, the random forcing function, and the deterministic obstacle, we prove existence and uniqueness of solutions of "pathwise" weak formulations. Suitable regularity results for deterministic, elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order error estimates of the statistical error and upper bounds for the corresponding computational cost for the classical MC method and novel MLMC-FEMs. Utilizing suitable multigrid solvers for the occurring sample problems, in two space dimensions MLMC-FEMs then provide numerical approximations of the expectation of the random solution with the same order of efficiency as for a corresponding deterministic problem, up to logarithmic terms. Our theoretical findings are illustrated by numerical experiments.
引用
收藏
页码:1243 / 1268
页数:26
相关论文
共 50 条
  • [1] ADAPTIVE MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC VARIATIONAL INEQUALITIES
    Kornhuber, Ralf
    Youett, Evgenia
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 1987 - 2007
  • [2] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    [J]. MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1033 - 1070
  • [3] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [4] Mixed finite element analysis of lognormal diffusion and multilevel monte carlo methods
    Graham I.G.
    Scheichl R.
    Ullmann E.
    [J]. Stochastics and Partial Differential Equations Analysis and Computations, 2016, 4 (1): : 41 - 75
  • [5] A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation
    Amirreza Khodadadian
    Maryam Parvizi
    Mostafa Abbaszadeh
    Mehdi Dehghan
    Clemens Heitzinger
    [J]. Computational Mechanics, 2019, 64 : 937 - 949
  • [6] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Longo, Marcello
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [7] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Marcello Longo
    [J]. Journal of Scientific Computing, 2022, 92
  • [8] A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation
    Khodadadian, Amirreza
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Heitzinger, Clemens
    [J]. COMPUTATIONAL MECHANICS, 2019, 64 (04) : 937 - 949
  • [9] A hierarchical finite element Monte Carlo method for stochastic two-scale elliptic equations
    Brown, Donald L.
    Viet Ha Hoang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 323 : 16 - 35
  • [10] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Andrea Barth
    Christoph Schwab
    Nathaniel Zollinger
    [J]. Numerische Mathematik, 2011, 119 : 123 - 161