Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs

被引:0
|
作者
Longo, Marcello [1 ]
机构
[1] D MATH ETH Zurich, Seminar Appl Math SAM, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
High-dimensional quadrature; quasi-Monte Carlo; Adaptivity; Finite element methods; Curse of dimensionality; CONVERGENCE; INTEGRATION; APPROXIMATION; EQUATIONS;
D O I
10.1007/s10915-022-01859-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce novel adaptive methods to approximate moments of solutions of partial differential Equations (PDEs) with uncertain parametric inputs. A typical problem in Uncertainty Quantification is the approximation of the expected values of quantities of interest of the solution, which requires the efficient numerical approximation of high-dimensional integrals. We perform this task by a class of deterministic quasi-Monte Carlo integration rules derived from Polynomial lattices, that allows to control a-posteriori the integration error without querying the governing PDE and does not incur the curse of dimensionality. Based on an abstract formulation of adaptive finite element methods (AFEM) for deterministic problems, we infer convergence of the combined adaptive algorithms in the parameter and physical space. We propose a selection of examples of PDEs admissible for these algorithms. Finally, we present numerical evidence of convergence for a model diffusion PDE.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs
    Marcello Longo
    [J]. Journal of Scientific Computing, 2022, 92
  • [2] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [3] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    [J]. Numerische Mathematik, 2015, 131 : 329 - 368
  • [4] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 411 - 449
  • [5] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Frances Y. Kuo
    Christoph Schwab
    Ian H. Sloan
    [J]. Foundations of Computational Mathematics, 2015, 15 : 411 - 449
  • [6] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [7] Quasi-Monte Carlo methods for elliptic BVPs
    Mascagni, M
    Karaivanova, A
    Hwang, CO
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 345 - 355
  • [8] Analyticity of parametric elliptic eigenvalue problems and applications to quasi-Monte Carlo methods
    Van Kien Nguyen
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (01) : 1 - 21
  • [9] QUASI-MONTE CARLO FINITE ELEMENT METHODS FOR A CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3351 - 3374
  • [10] QUASI-MONTE CARLO INTEGRATION FOR AFFINE-PARAMETRIC, ELLIPTIC PDEs: LOCAL SUPPORTS AND PRODUCT WEIGHTS
    Gantner, Robert N.
    Herrmann, Lukas
    Schwab, Christoph
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 111 - 135