MULTILEVEL MONTE CARLO FINITE ELEMENT METHODS FOR STOCHASTIC ELLIPTIC VARIATIONAL INEQUALITIES

被引:11
|
作者
Kornhuber, Ralf [1 ]
Schwab, Christoph [2 ]
Wolf, Maren-Wanda [1 ]
机构
[1] FU Berlin, FB Math & Informat, Inst Math, D-14195 Berlin, Germany
[2] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; CONSERVATIVE TRANSPORT; RANDOM-COEFFICIENTS; MULTIGRID METHODS; CONVERGENCE RATE; ADDITIVE NOISE; APPROXIMATION; SIMULATION; PDES; FLOW;
D O I
10.1137/130916126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multilevel Monte Carlo finite element methods (MLMC-FEMs) for the solution of stochastic elliptic variational inequalities are introduced, analyzed, and numerically investigated. Under suitable assumptions on the random diffusion coefficient, the random forcing function, and the deterministic obstacle, we prove existence and uniqueness of solutions of "pathwise" weak formulations. Suitable regularity results for deterministic, elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order error estimates of the statistical error and upper bounds for the corresponding computational cost for the classical MC method and novel MLMC-FEMs. Utilizing suitable multigrid solvers for the occurring sample problems, in two space dimensions MLMC-FEMs then provide numerical approximations of the expectation of the random solution with the same order of efficiency as for a corresponding deterministic problem, up to logarithmic terms. Our theoretical findings are illustrated by numerical experiments.
引用
收藏
页码:1243 / 1268
页数:26
相关论文
共 50 条
  • [41] Boundary element methods for variational inequalities
    O. Steinbach
    [J]. Numerische Mathematik, 2014, 126 : 173 - 197
  • [42] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 411 - 449
  • [43] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Frances Y. Kuo
    Christoph Schwab
    Ian H. Sloan
    [J]. Foundations of Computational Mathematics, 2015, 15 : 411 - 449
  • [44] Goal-oriented adaptive finite element multilevel Monte Carlo with convergence rates
    Beck, Joakim
    Liu, Yang
    von Schwerin, Erik
    Tempone, Raul
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [45] Finite element methods for semilinear elliptic stochastic partial differential equations
    Yanzhao Cao
    Hongtao Yang
    Li Yin
    [J]. Numerische Mathematik, 2007, 106 : 181 - 198
  • [46] Finite element methods for semilinear elliptic stochastic partial differential equations
    Cao, Yanzhao
    Yang, Hongtao
    Yin, Li
    [J]. NUMERISCHE MATHEMATIK, 2007, 106 (02) : 181 - 198
  • [47] MULTILEVEL ITERATIVE METHODS FOR MIXED FINITE-ELEMENT DISCRETIZATIONS OF ELLIPTIC PROBLEMS
    VASSILEVSKI, PS
    WANG, JP
    [J]. NUMERISCHE MATHEMATIK, 1992, 63 (04) : 503 - 520
  • [48] Discontinuous Galerkin finite element methods for variational inequalities of first and second kinds
    Djoko, J. K.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (01) : 296 - 311
  • [49] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    [J]. Numerische Mathematik, 2019, 142 : 863 - 915
  • [50] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915