MULTILEVEL MONTE CARLO FINITE ELEMENT METHODS FOR STOCHASTIC ELLIPTIC VARIATIONAL INEQUALITIES

被引:11
|
作者
Kornhuber, Ralf [1 ]
Schwab, Christoph [2 ]
Wolf, Maren-Wanda [1 ]
机构
[1] FU Berlin, FB Math & Informat, Inst Math, D-14195 Berlin, Germany
[2] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; CONSERVATIVE TRANSPORT; RANDOM-COEFFICIENTS; MULTIGRID METHODS; CONVERGENCE RATE; ADDITIVE NOISE; APPROXIMATION; SIMULATION; PDES; FLOW;
D O I
10.1137/130916126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multilevel Monte Carlo finite element methods (MLMC-FEMs) for the solution of stochastic elliptic variational inequalities are introduced, analyzed, and numerically investigated. Under suitable assumptions on the random diffusion coefficient, the random forcing function, and the deterministic obstacle, we prove existence and uniqueness of solutions of "pathwise" weak formulations. Suitable regularity results for deterministic, elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order error estimates of the statistical error and upper bounds for the corresponding computational cost for the classical MC method and novel MLMC-FEMs. Utilizing suitable multigrid solvers for the occurring sample problems, in two space dimensions MLMC-FEMs then provide numerical approximations of the expectation of the random solution with the same order of efficiency as for a corresponding deterministic problem, up to logarithmic terms. Our theoretical findings are illustrated by numerical experiments.
引用
收藏
页码:1243 / 1268
页数:26
相关论文
共 50 条
  • [21] Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance
    Giles, Michael B.
    Reisinger, Christoph
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2012, 3 (01): : 572 - 592
  • [22] New Monte-Carlo stochastic finite element method
    Deng, Jian
    Bian, Li
    Peng, Huai-Sheng
    [J]. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2006, 37 (05): : 997 - 1001
  • [23] Multilevel Monte Carlo methods
    Heinrich, S
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 58 - 67
  • [24] Multilevel Monte Carlo methods
    Giles, Michael B.
    [J]. ACTA NUMERICA, 2015, 24 : 259 - 328
  • [25] A massively parallel implementation of multilevel Monte Carlo for finite element models
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 213 : 18 - 39
  • [26] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [27] Finite element methods for parabolic variational inequalities with a Volterra term
    Nair, P
    Pani, AK
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (1-2) : 107 - 127
  • [28] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    [J]. NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600
  • [29] On finite element approximation of variational inequalities arising from elliptic control problems
    Wirsching, HJ
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (7-8) : 917 - 932
  • [30] Error bounds for finite element solutions of elliptic variational inequalities of second kind
    Suttmeier, F.T.
    [J]. East-West Journal of Numerical Mathematics, 2001, 9 (04): : 307 - 313