MULTILEVEL MONTE CARLO FINITE ELEMENT METHODS FOR STOCHASTIC ELLIPTIC VARIATIONAL INEQUALITIES

被引:11
|
作者
Kornhuber, Ralf [1 ]
Schwab, Christoph [2 ]
Wolf, Maren-Wanda [1 ]
机构
[1] FU Berlin, FB Math & Informat, Inst Math, D-14195 Berlin, Germany
[2] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; CONSERVATIVE TRANSPORT; RANDOM-COEFFICIENTS; MULTIGRID METHODS; CONVERGENCE RATE; ADDITIVE NOISE; APPROXIMATION; SIMULATION; PDES; FLOW;
D O I
10.1137/130916126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multilevel Monte Carlo finite element methods (MLMC-FEMs) for the solution of stochastic elliptic variational inequalities are introduced, analyzed, and numerically investigated. Under suitable assumptions on the random diffusion coefficient, the random forcing function, and the deterministic obstacle, we prove existence and uniqueness of solutions of "pathwise" weak formulations. Suitable regularity results for deterministic, elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order error estimates of the statistical error and upper bounds for the corresponding computational cost for the classical MC method and novel MLMC-FEMs. Utilizing suitable multigrid solvers for the occurring sample problems, in two space dimensions MLMC-FEMs then provide numerical approximations of the expectation of the random solution with the same order of efficiency as for a corresponding deterministic problem, up to logarithmic terms. Our theoretical findings are illustrated by numerical experiments.
引用
收藏
页码:1243 / 1268
页数:26
相关论文
共 50 条
  • [11] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [12] Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind
    Fang Feng
    Weimin Han
    Jianguo Huang
    [J]. Journal of Scientific Computing, 2019, 80 : 60 - 80
  • [13] Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind
    Feng, Fang
    Han, Weimin
    Huang, Jianguo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 60 - 80
  • [14] The parallel finite element system M plus plus with integrated multilevel preconditioning and multilevel Monte Carlo methods
    Baumgarten, Niklas
    Wieners, Christian
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 : 391 - 406
  • [15] Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation
    Papadrakakis, M
    Papadopoulos, V
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 134 (3-4) : 325 - 340
  • [16] Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation
    Papadrakakis, M
    Kotsopulos, A
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 168 (1-4) : 305 - 320
  • [17] Multilevel monte carlo variational inference
    Fujisawa, Masahiro
    Sato, Issei
    [J]. Journal of Machine Learning Research, 2021, 22
  • [18] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [19] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    [J]. Numerische Mathematik, 2015, 131 : 329 - 368
  • [20] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15