Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients

被引:205
|
作者
Barth, Andrea [1 ]
Schwab, Christoph [1 ]
Zollinger, Nathaniel [1 ]
机构
[1] ETH Zentrum, Seminar Angew Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; COLLOCATION METHOD; CONSERVATIVE TRANSPORT; ADDITIVE NOISE; SIMULATION; APPROXIMATION; SPDES; FLOW;
D O I
10.1007/s00211-011-0377-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysis.
引用
收藏
页码:123 / 161
页数:39
相关论文
共 50 条
  • [1] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Andrea Barth
    Christoph Schwab
    Nathaniel Zollinger
    Numerische Mathematik, 2011, 119 : 123 - 161
  • [2] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 411 - 449
  • [3] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Frances Y. Kuo
    Christoph Schwab
    Ian H. Sloan
    Foundations of Computational Mathematics, 2015, 15 : 411 - 449
  • [4] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Gittelson, Claude J.
    Konno, Juho
    Schwab, Christoph
    Stenberg, Rolf
    NUMERISCHE MATHEMATIK, 2013, 125 (02) : 347 - 386
  • [5] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Claude J. Gittelson
    Juho Könnö
    Christoph Schwab
    Rolf Stenberg
    Numerische Mathematik, 2013, 125 : 347 - 386
  • [6] Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients
    Li, Jingshi
    Wang, Xiaoshen
    Zhang, Kai
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 181 - 194
  • [7] A multi level monte carlo method with control variate for elliptic pdes with log-normal coefficients
    Nobile F.
    Tesei F.
    Stochastic Partial Differential Equations: Analysis and Computations, 2015, 3 (3) : 398 - 444
  • [8] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [9] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    Numerische Mathematik, 2015, 131 : 329 - 368
  • [10] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352