Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients

被引:205
|
作者
Barth, Andrea [1 ]
Schwab, Christoph [1 ]
Zollinger, Nathaniel [1 ]
机构
[1] ETH Zentrum, Seminar Angew Math, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; COLLOCATION METHOD; CONSERVATIVE TRANSPORT; ADDITIVE NOISE; SIMULATION; APPROXIMATION; SPDES; FLOW;
D O I
10.1007/s00211-011-0377-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysis.
引用
收藏
页码:123 / 161
页数:39
相关论文
共 50 条
  • [21] New Monte-Carlo stochastic finite element method
    Deng, Jian
    Bian, Li
    Peng, Huai-Sheng
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2006, 37 (05): : 997 - 1001
  • [22] Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients
    Zakharov, Petr
    Iliev, Oleg
    Mohring, Jan
    Shegunov, Nikolay
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 463 - 472
  • [23] Quasi Continuous Level Monte Carlo for Random Elliptic PDEs
    Beschle, Cedric Aaron
    Barth, Andrea
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 3 - 31
  • [24] Multi-level Monte Carlo weak Galerkin method with nested meshes for stochastic Brinkman problem
    Hao, Yongle
    Wang, Xiaoshen
    Zhang, Kai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 214 - 227
  • [25] Uncertainty quantification in tsunami modeling using multi-level Monte Carlo finite volume method
    Sánchez-Linares C.
    de la Asunción M.
    Castro M.J.
    González-Vida J.M.
    Macías J.
    Mishra S.
    Journal of Mathematics in Industry, 6 (1)
  • [26] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    Numerische Mathematik, 2013, 125 : 569 - 600
  • [27] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [28] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600
  • [29] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [30] An adaptive sparse grid method for elliptic PDEs with stochastic coefficients
    Erhel, J.
    Mghazli, Z.
    Oumouni, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 392 - 407