Boundary element methods for variational inequalities

被引:0
|
作者
O. Steinbach
机构
[1] TU Graz,Institut für Numerische Mathematik
来源
Numerische Mathematik | 2014年 / 126卷
关键词
35J85; 65N38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a priori error estimates for the Galerkin solution of variational inequalities which are formulated in fractional Sobolev trace spaces, i.e. in H˜1/2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{H}^{1/2}(\Gamma )$$\end{document}. In addition to error estimates in the energy norm we also provide, by applying the Aubin–Nitsche trick for variational inequalities, error estimates in lower order Sobolev spaces including L2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\Gamma )$$\end{document}. The resulting discrete variational inequality is solved by using a semi-smooth Newton method, which is equivalent to an active set strategy. A numerical example is given which confirms the theoretical results.
引用
收藏
页码:173 / 197
页数:24
相关论文
共 50 条