A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation

被引:1
|
作者
Amirreza Khodadadian
Maryam Parvizi
Mostafa Abbaszadeh
Mehdi Dehghan
Clemens Heitzinger
机构
[1] Leibniz University of Hannover,Institute of Applied Mathematics
[2] Vienna University of Technology (TU Wien),Institute for Analysis and Scientific Computing
[3] Amirkabir University of Technology,Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Computational Mechanics | 2019年 / 64卷
关键词
Multilevel Monte Carlo; Finite element; Cahn–Hilliard–Cook equation; Euler–Maruyama method; Time discretization; 35R60; 60H15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ the multilevel Monte Carlo finite element method to solve the stochastic Cahn–Hilliard–Cook equation. The Ciarlet–Raviart mixed finite element method is applied to solve the fourth-order equation. In order to estimate the mild solution, we use finite elements for space discretization and the semi-implicit Euler–Maruyama method in time. For the stochastic scheme, we use the multilevel method to decrease the computational cost (compared to the Monte Carlo method). We implement the method to solve three specific numerical examples (both two- and three dimensional) and study the effect of different noise measures.
引用
收藏
页码:937 / 949
页数:12
相关论文
共 50 条
  • [1] A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation
    Khodadadian, Amirreza
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Heitzinger, Clemens
    [J]. COMPUTATIONAL MECHANICS, 2019, 64 (04) : 937 - 949
  • [2] Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation
    Chai, Shimin
    Cao, Yanzhao
    Zou, Yongkui
    Zhao, Wenju
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 44 - 56
  • [3] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2407 - 2429
  • [4] Finite-element approximation of the linearized Cahn-Hilliard-Cook equation
    Larsson, Stig
    Mesforush, Ali
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1315 - 1333
  • [5] Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation
    Wang, Xiaolei
    Wang, Bo
    Zou, Guang-an
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2825 - 2841
  • [6] Evolving surface finite element method for the Cahn–Hilliard equation
    Charles M. Elliott
    Thomas Ranner
    [J]. Numerische Mathematik, 2015, 129 : 483 - 534
  • [7] A nonconforming finite element method for the Cahn-Hilliard equation
    Zhang, Shuo
    Wang, Ming
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 7361 - 7372
  • [8] Analysis of a Mixed Finite Element Method for Stochastic Cahn-Hilliard Equation with Multiplicative Noise
    Li, Yukun
    Prachniak, Corey
    Zhang, Yi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (04) : 1003 - 1028
  • [9] Evolving surface finite element method for the Cahn-Hilliard equation
    Elliott, Charles M.
    Ranner, Thomas
    [J]. NUMERISCHE MATHEMATIK, 2015, 129 (03) : 483 - 534
  • [10] A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation
    Susanne C. Brenner
    Amanda E. Diegel
    Li-Yeng Sung
    [J]. Journal of Scientific Computing, 2018, 77 : 1234 - 1249