This paper reports a fully discretized scheme for the Cahn-Hilliard equation. The method uses a convexity-splitting scheme to discretize in the temporal variable and a nonconforming finite element method to discretize in the spatial variable. And, the scheme can preserve the mass conservation and energy dissipation properties of the original problem. Some typical phase transition phenomena are also observed through the numerical examples. (C) 2010 Elsevier Inc. All rights reserved.
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, Susanne C.
Diegel, Amanda E.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Diegel, Amanda E.
Sung, Li-Yeng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
机构:
Univ Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R China
Shandong Womens Univ, Sch Data Sci & Comp, Jinan, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R China
Li, Na
Lin, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Dundee, Dept Math, Dundee DD1 4HN, ScotlandUniv Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R China
Lin, Ping
Gao, Fuzheng
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Math, Jinan 250100, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R China