A nonconforming finite element method for the Cahn-Hilliard equation

被引:41
|
作者
Zhang, Shuo [2 ]
Wang, Ming [1 ]
机构
[1] Peking Univ, LMAM Sch Math Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, LSEC, Inst Computat Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Cahn-Hilliard equation; Nonconforming finite element; Convexity splitting; Phase transition; FOURIER-SPECTRAL METHOD; DISCONTINUOUS GALERKIN METHODS; NONLINEAR DIFFERENCE SCHEME; TIME-STEPPING METHODS; SPINODAL DECOMPOSITION; NUMERICAL-ANALYSIS; COLLOCATION METHOD; PHASE-TRANSITION; FREE-ENERGY; SYSTEM;
D O I
10.1016/j.jcp.2010.06.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper reports a fully discretized scheme for the Cahn-Hilliard equation. The method uses a convexity-splitting scheme to discretize in the temporal variable and a nonconforming finite element method to discretize in the spatial variable. And, the scheme can preserve the mass conservation and energy dissipation properties of the original problem. Some typical phase transition phenomena are also observed through the numerical examples. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:7361 / 7372
页数:12
相关论文
共 50 条
  • [1] A NONCONFORMING FINITE-ELEMENT METHOD FOR THE TWO-DIMENSIONAL CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    FRENCH, DA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) : 884 - 903
  • [2] Evolving surface finite element method for the Cahn-Hilliard equation
    Elliott, Charles M.
    Ranner, Thomas
    [J]. NUMERISCHE MATHEMATIK, 2015, 129 (03) : 483 - 534
  • [3] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Xiaobing Feng
    Andreas Prohl
    [J]. Numerische Mathematik, 2004, 99 : 47 - 84
  • [4] A Robust Solver for a Mixed Finite Element Method for the Cahn-Hilliard Equation
    Brenner, Susanne C.
    Diegel, Amanda E.
    Sung, Li-Yeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 1234 - 1249
  • [5] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Feng, XB
    Prohl, A
    [J]. NUMERISCHE MATHEMATIK, 2004, 99 (01) : 47 - 84
  • [6] A multigrid finite element solver for the Cahn-Hilliard equation
    Kay, D
    Welford, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 288 - 304
  • [7] Finite element approximation of the Cahn-Hilliard equation on surfaces
    Du, Qiang
    Ju, Lili
    Tian, Li
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (29-32) : 2458 - 2470
  • [8] A SAV finite element method for the Cahn-Hilliard equation with dynamic boundary conditions
    Li, Na
    Lin, Ping
    Gao, Fuzheng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [9] High Order Finite Element Calculations for the Cahn-Hilliard Equation
    Goudenege, Ludovic
    Martin, Daniel
    Vial, Gregory
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 294 - 321
  • [10] A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION
    Wang, Junping
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 211 - 235