A nonconforming finite element method for the Cahn-Hilliard equation

被引:41
|
作者
Zhang, Shuo [2 ]
Wang, Ming [1 ]
机构
[1] Peking Univ, LMAM Sch Math Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, LSEC, Inst Computat Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Cahn-Hilliard equation; Nonconforming finite element; Convexity splitting; Phase transition; FOURIER-SPECTRAL METHOD; DISCONTINUOUS GALERKIN METHODS; NONLINEAR DIFFERENCE SCHEME; TIME-STEPPING METHODS; SPINODAL DECOMPOSITION; NUMERICAL-ANALYSIS; COLLOCATION METHOD; PHASE-TRANSITION; FREE-ENERGY; SYSTEM;
D O I
10.1016/j.jcp.2010.06.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper reports a fully discretized scheme for the Cahn-Hilliard equation. The method uses a convexity-splitting scheme to discretize in the temporal variable and a nonconforming finite element method to discretize in the spatial variable. And, the scheme can preserve the mass conservation and energy dissipation properties of the original problem. Some typical phase transition phenomena are also observed through the numerical examples. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:7361 / 7372
页数:12
相关论文
共 50 条
  • [21] An Explicit Adaptive Finite Difference Method for the Cahn-Hilliard Equation
    Ham, Seokjun
    Li, Yibao
    Jeong, Darae
    Lee, Chaeyoung
    Kwak, Soobin
    Hwang, Youngjin
    Kim, Junseok
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [22] Hessian recovery based finite element methods for the Cahn-Hilliard equation
    Xu, Minqiang
    Guo, Hailong
    Zou, Qingsong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 386 : 524 - 540
  • [23] Recovery Type a Posteriori Error Estimation of an Adaptive Finite Element Method for Cahn-Hilliard Equation
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    Yin, Peimeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
  • [24] Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation
    Diegel, Amanda E.
    Wang, Cheng
    Wise, Steven M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1867 - 1897
  • [25] Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation
    Sariaydin-Filibelioglu, Ayse
    Karasozen, Bulent
    Uzunca, Murat
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) : 303 - 314
  • [26] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [27] A Time Splitting Space Spectral Element Method for the Cahn-Hilliard Equation
    Chen, Lizhen
    Xu, Chuanju
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (04) : 333 - 351
  • [28] Lattice Boltzmann equation method for the Cahn-Hilliard equation
    Zheng, Lin
    Zheng, Song
    Zhai, Qinglan
    [J]. PHYSICAL REVIEW E, 2015, 91 (01):
  • [29] A MIXED FINITE-ELEMENT METHOD FOR THE CAHN-HILLIARD AND THE SIVASHINSKY EQUATIONS
    MILNER, FA
    [J]. MATEMATICA APLICADA E COMPUTACIONAL, 1990, 9 (01): : 3 - 22
  • [30] A discontinuous Galerkin method for the Cahn-Hilliard equation
    Choo S.M.
    Lee Y.J.
    [J]. Journal of Applied Mathematics and Computing, 2005, 18 (1-2) : 113 - 126