A Robust Solver for a Mixed Finite Element Method for the Cahn-Hilliard Equation

被引:9
|
作者
Brenner, Susanne C. [1 ,2 ]
Diegel, Amanda E. [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Cahn-Hilliard equation; Convex splitting; Mixed finite element methods; MINRES; Block diagonal preconditioner; Multigrid; ADAPTIVE MESH REFINEMENT; SADDLE-POINT PROBLEMS; MULTIGRID METHOD; SYSTEM; MODEL; APPROXIMATION; SCHEME;
D O I
10.1007/s10915-018-0753-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a robust solver for a mixed finite element convex splitting scheme for the Cahn-Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.
引用
收藏
页码:1234 / 1249
页数:16
相关论文
共 50 条