A robust solver for a second order mixed finite element method for the Cahn-Hilliard equation

被引:3
|
作者
Brenner, Susanne C. [1 ,2 ]
Diegel, Amanda E. [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Cahn-Hilliard equation; Convex Splitting; Mixed finite element methods; MINRES; Block diagonal preconditioner; Multigrid; ENERGY STABLE SCHEMES; CONVERGENCE; APPROXIMATIONS; STABILITY; MODELS;
D O I
10.1016/j.cam.2019.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spatial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Robust Solver for a Mixed Finite Element Method for the Cahn-Hilliard Equation
    Brenner, Susanne C.
    Diegel, Amanda E.
    Sung, Li-Yeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 1234 - 1249
  • [2] A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation
    Susanne C. Brenner
    Amanda E. Diegel
    Li-Yeng Sung
    [J]. Journal of Scientific Computing, 2018, 77 : 1234 - 1249
  • [3] Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation
    Diegel, Amanda E.
    Wang, Cheng
    Wise, Steven M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1867 - 1897
  • [4] A multigrid finite element solver for the Cahn-Hilliard equation
    Kay, D
    Welford, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 288 - 304
  • [5] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Xiaobing Feng
    Andreas Prohl
    [J]. Numerische Mathematik, 2004, 99 : 47 - 84
  • [6] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Feng, XB
    Prohl, A
    [J]. NUMERISCHE MATHEMATIK, 2004, 99 (01) : 47 - 84
  • [7] A nonconforming finite element method for the Cahn-Hilliard equation
    Zhang, Shuo
    Wang, Ming
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 7361 - 7372
  • [8] High Order Finite Element Calculations for the Cahn-Hilliard Equation
    Goudenege, Ludovic
    Martin, Daniel
    Vial, Gregory
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 294 - 321
  • [9] High Order Finite Element Calculations for the Cahn-Hilliard Equation
    Ludovic Goudenège
    Daniel Martin
    Grégory Vial
    [J]. Journal of Scientific Computing, 2012, 52 : 294 - 321
  • [10] Evolving surface finite element method for the Cahn-Hilliard equation
    Elliott, Charles M.
    Ranner, Thomas
    [J]. NUMERISCHE MATHEMATIK, 2015, 129 (03) : 483 - 534