Finite-element approximation of the linearized Cahn-Hilliard-Cook equation

被引:29
|
作者
Larsson, Stig [1 ,2 ]
Mesforush, Ali [3 ]
机构
[1] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Shahrood Univ Technol, Sch Math Sci, Shahrood, Iran
基金
瑞典研究理事会;
关键词
Cahn-Hilliard-Cook equation; stochastic convolution; Wiener process; finite-element method; backward Euler method; mean square; error estimate; strong convergence; SPINODAL DECOMPOSITION; NONUNIFORM SYSTEM; FREE ENERGY; NOISE;
D O I
10.1093/imanum/drq042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linearized Cahn-Hilliard-Cook equation is discretized in the spatial variables by a standard finite-element method. Strong convergence estimates are proved under suitable assumptions on the covariance operator of the Wiener process, which is driving the equation. Backward Euler time stepping is also studied. The analysis is set in a framework based on analytic semigroups. The main effort is spent on proving detailed error bounds for the corresponding deterministic Cahn-Hilliard equation. The results should be interpreted as results on the approximation of the stochastic convolution, which is a part of the mild solution of the nonlinear Cahn-Hilliard-Cook equation.
引用
收藏
页码:1315 / 1333
页数:19
相关论文
共 50 条
  • [1] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2407 - 2429
  • [2] Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation
    Chai, Shimin
    Cao, Yanzhao
    Zou, Yongkui
    Zhao, Wenju
    APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 44 - 56
  • [3] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION (vol 49, pg 2407, 2011)
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2594 - 2597
  • [4] A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation
    Khodadadian, Amirreza
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Heitzinger, Clemens
    COMPUTATIONAL MECHANICS, 2019, 64 (04) : 937 - 949
  • [5] Spinodal decomposition for the Cahn-Hilliard-Cook equation
    Blömker, D
    Maier-Paape, S
    Wanner, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (03) : 553 - 582
  • [6] ERROR ESTIMATES OF SEMIDISCRETE AND FULLY DISCRETE FINITE ELEMENT METHODS FOR THE CAHN-HILLIARD-COOK EQUATION
    Qi, Ruisheng
    Wang, Xiaojie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1613 - 1653
  • [7] Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation
    Wang, Xiaolei
    Wang, Bo
    Zou, Guang-an
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2825 - 2841
  • [8] Domain wall formation in the Cahn-Hilliard-Cook equation
    Dziarmaga, J
    Sadzikowski, M
    PHYSICAL REVIEW E, 2001, 63 (03): : 361121 - 361126
  • [9] An IMEX finite element method for a linearized Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise
    Zouraris, Georgios E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 5555 - 5575
  • [10] SUPERSYMMETRY IN THE CAHN-HILLIARD-COOK THEORY
    KLEIN, W
    BATROUNI, GG
    PHYSICAL REVIEW LETTERS, 1991, 67 (10) : 1278 - 1281