FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION

被引:39
|
作者
Kovacs, Mihaly [1 ]
Larsson, Stig [2 ,3 ]
Mesforush, Ali [4 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
[2] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[3] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[4] Shahrood Univ Technol, Sch Math Sci, Shahrood, Iran
基金
瑞典研究理事会;
关键词
Cahn-Hilliard-Cook equation; additive noise; Wiener process; existence; regularity; finite element; error estimate; strong convergence; SPINODAL DECOMPOSITION;
D O I
10.1137/110828150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear stochastic Cahn-Hilliard equation perturbed by additive colored noise. We show almost sure existence and regularity of solutions. We introduce spatial approximation by a standard finite element method and prove error estimates of optimal order on sets of probability arbitrarily close to 1. We also prove strong convergence without known rate.
引用
收藏
页码:2407 / 2429
页数:23
相关论文
共 50 条
  • [1] Finite-element approximation of the linearized Cahn-Hilliard-Cook equation
    Larsson, Stig
    Mesforush, Ali
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1315 - 1333
  • [2] Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation
    Chai, Shimin
    Cao, Yanzhao
    Zou, Yongkui
    Zhao, Wenju
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 44 - 56
  • [3] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION (vol 49, pg 2407, 2011)
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2594 - 2597
  • [4] A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation
    Khodadadian, Amirreza
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Heitzinger, Clemens
    [J]. COMPUTATIONAL MECHANICS, 2019, 64 (04) : 937 - 949
  • [5] Spinodal decomposition for the Cahn-Hilliard-Cook equation
    Blömker, D
    Maier-Paape, S
    Wanner, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (03) : 553 - 582
  • [6] ERROR ESTIMATES OF SEMIDISCRETE AND FULLY DISCRETE FINITE ELEMENT METHODS FOR THE CAHN-HILLIARD-COOK EQUATION
    Qi, Ruisheng
    Wang, Xiaojie
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1613 - 1653
  • [7] Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation
    Wang, Xiaolei
    Wang, Bo
    Zou, Guang-an
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2825 - 2841
  • [8] Domain wall formation in the Cahn-Hilliard-Cook equation
    Dziarmaga, J
    Sadzikowski, M
    [J]. PHYSICAL REVIEW E, 2001, 63 (03):
  • [9] SUPERSYMMETRY IN THE CAHN-HILLIARD-COOK THEORY
    KLEIN, W
    BATROUNI, GG
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (10) : 1278 - 1281
  • [10] Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation
    Bloemker, Dirk
    Maier-Paape, Stanislaus
    Wanner, Thomas
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 449 - 489