Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation

被引:19
|
作者
Chai, Shimin [1 ]
Cao, Yanzhao [1 ,2 ]
Zou, Yongkui [1 ]
Zhao, Wenju [3 ]
机构
[1] Jilin Univ, Sch Math, Changchun, Jilin, Peoples R China
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[3] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
SPDEs; Cahn-Hilliard equation; Finite element; APPROXIMATION;
D O I
10.1016/j.apnum.2017.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite element approximation of the stochastic Cahn-Hilliard-Cook equation driven by an infinite dimensional Wiener type noise. The Argyris finite elements are used to discretize the spatial variables while the infinite dimensional (cylindrical) Wiener process is approximated by truncated stochastic series spanned by the spectral basis of the covariance operator. The optimal strong convergence order in L-2 and H-2 norms is obtained. Unlike the mixed finite element method studied in the existing literature, our method allows the covariance operator of the Wiener process to have an infinite trace, including the space-time white noise is allowed in our model. Numerical experiments are presented to illustrate the theoretical analysis. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 50 条
  • [1] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2407 - 2429
  • [2] A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation
    Khodadadian, Amirreza
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Heitzinger, Clemens
    [J]. COMPUTATIONAL MECHANICS, 2019, 64 (04) : 937 - 949
  • [3] Finite-element approximation of the linearized Cahn-Hilliard-Cook equation
    Larsson, Stig
    Mesforush, Ali
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1315 - 1333
  • [4] ERROR ESTIMATES OF SEMIDISCRETE AND FULLY DISCRETE FINITE ELEMENT METHODS FOR THE CAHN-HILLIARD-COOK EQUATION
    Qi, Ruisheng
    Wang, Xiaojie
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1613 - 1653
  • [5] Spinodal decomposition for the Cahn-Hilliard-Cook equation
    Blömker, D
    Maier-Paape, S
    Wanner, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (03) : 553 - 582
  • [6] Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation
    Wang, Xiaolei
    Wang, Bo
    Zou, Guang-an
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2825 - 2841
  • [7] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION (vol 49, pg 2407, 2011)
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2594 - 2597
  • [8] Domain wall formation in the Cahn-Hilliard-Cook equation
    Dziarmaga, J
    Sadzikowski, M
    [J]. PHYSICAL REVIEW E, 2001, 63 (03):
  • [9] A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation
    Amirreza Khodadadian
    Maryam Parvizi
    Mostafa Abbaszadeh
    Mehdi Dehghan
    Clemens Heitzinger
    [J]. Computational Mechanics, 2019, 64 : 937 - 949
  • [10] SUPERSYMMETRY IN THE CAHN-HILLIARD-COOK THEORY
    KLEIN, W
    BATROUNI, GG
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (10) : 1278 - 1281