Extending Partial Representations of Function Graphs and Permutation Graphs

被引:0
|
作者
Klavik, Pavel [1 ]
Kratochvil, Jan [1 ]
Krawczyk, Tomasz [2 ]
Walczak, Bartosz [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, CR-11636 Prague 1, Czech Republic
[2] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, PL-31007 Krakow, Poland
来源
ALGORITHMS - ESA 2012 | 2012年 / 7501卷
关键词
PRECOLORING EXTENSION; NP-COMPLETENESS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0, 1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear. We focus on the problem of extending partial representations, which generalizes the recognition problem. We observe that for permutation graphs an easy extension of Golumbic's comparability graph recognition algorithm can be exploited. This approach fails for function graphs. Nevertheless, we present a polynomial-time algorithm for extending a partial representation of a graph by functions defined on the entire interval [0, 1] provided for some of the vertices. On the other hand, we show that if a partial representation consists of functions defined on subintervals of [0, 1], then the problem of extending this representation to functions on the entire interval [0, 1] becomes NP-complete.
引用
下载
收藏
页码:671 / 682
页数:12
相关论文
共 50 条
  • [21] On opposition graphs, coalition graphs, and bipartite permutation graphs
    Le, Van Bang
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 26 - 33
  • [22] Minimal Obstructions for Partial Representations of Interval Graphs
    Klavik, Pavel
    Saumell, Maria
    ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 401 - 413
  • [23] Minimal obstructions for partial representations of interval graphs
    Klavík, Pavel (klavik@iuuk.mff.cuni.cz), 1600, Springer Verlag (8889):
  • [24] Minimal Obstructions for Partial Representations of Interval Graphs
    Klavik, Pavel
    Saumell, Maria
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [25] EXTENDING PARTIAL EDGE COLORINGS OF CARTESIAN PRODUCTS OF GRAPHS
    Casselgren, Carl Johan
    Petros, Fikre B.
    Fufa, Samuel A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [26] TRANSITIVE ORIENTATION OF GRAPHS AND IDENTIFICATION OF PERMUTATION GRAPHS
    PNUELI, A
    LEMPEL, A
    EVEN, S
    CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (01): : 160 - &
  • [27] SPLIT PERMUTATION GRAPHS
    BOUAZA, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (11): : 971 - 977
  • [28] Succinct Permutation Graphs
    Konstantinos Tsakalidis
    Sebastian Wild
    Viktor Zamaraev
    Algorithmica, 2023, 85 : 509 - 543
  • [29] Split Permutation Graphs
    Nicholas Korpelainen
    Vadim V. Lozin
    Colin Mayhill
    Graphs and Combinatorics, 2014, 30 : 633 - 646
  • [30] Polar Permutation Graphs
    Ekim, Tinaz
    Heggernes, Pinar
    Meister, Daniel
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 218 - +