Extending Partial Representations of Function Graphs and Permutation Graphs

被引:0
|
作者
Klavik, Pavel [1 ]
Kratochvil, Jan [1 ]
Krawczyk, Tomasz [2 ]
Walczak, Bartosz [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, CR-11636 Prague 1, Czech Republic
[2] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, PL-31007 Krakow, Poland
来源
ALGORITHMS - ESA 2012 | 2012年 / 7501卷
关键词
PRECOLORING EXTENSION; NP-COMPLETENESS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0, 1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear. We focus on the problem of extending partial representations, which generalizes the recognition problem. We observe that for permutation graphs an easy extension of Golumbic's comparability graph recognition algorithm can be exploited. This approach fails for function graphs. Nevertheless, we present a polynomial-time algorithm for extending a partial representation of a graph by functions defined on the entire interval [0, 1] provided for some of the vertices. On the other hand, we show that if a partial representation consists of functions defined on subintervals of [0, 1], then the problem of extending this representation to functions on the entire interval [0, 1] becomes NP-complete.
引用
收藏
页码:671 / 682
页数:12
相关论文
共 50 条
  • [31] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2611 - 2619
  • [32] Split Permutation Graphs
    Korpelainen, Nicholas
    Lozin, Vadim V.
    Mayhill, Colin
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 633 - 646
  • [33] ON CYCLE PERMUTATION GRAPHS
    RINGEISEN, RD
    DISCRETE MATHEMATICS, 1984, 51 (03) : 265 - 275
  • [34] PLANAR PERMUTATION GRAPHS
    CHARTRAND, G
    HARARY, F
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1967, 3 (04): : 433 - +
  • [35] On diameter of permutation graphs
    Gu, WZ
    NETWORKS, 1999, 33 (03) : 161 - 166
  • [36] On Combination and Permutation Graphs
    Seoud, M. A.
    Anwar, M.
    UTILITAS MATHEMATICA, 2015, 98 : 243 - 255
  • [37] CIRCULAR PERMUTATION GRAPHS
    ROTEM, D
    URRUTIA, J
    NETWORKS, 1982, 12 (04) : 429 - 437
  • [38] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Antonius J. J.
    Liu, Jiping
    Peng, Sheng-Lung
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 494 - 504
  • [39] DOMINATION IN PERMUTATION GRAPHS
    FARBER, M
    KEIL, JM
    JOURNAL OF ALGORITHMS, 1985, 6 (03) : 309 - 321
  • [40] Succinct Permutation Graphs
    Tsakalidis, Konstantinos
    Wild, Sebastian
    Zamaraev, Viktor
    ALGORITHMICA, 2023, 85 (02) : 509 - 543