On probe permutation graphs

被引:0
|
作者
Chandler, David B.
Chang, Maw-Shang
Kloks, Antonius J. J.
Liu, Jiping
Peng, Sheng-Lung [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[2] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 62107, Taiwan
[3] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[4] Natl Dong Hwa Univ, Dept Comp Sci & Informat Engn, Hualien 97401, Taiwan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a class of graphs G, a graph G is a probe graph of G if its vertices can be partitioned into two sets P, the probes, and N, the nonprobes, where N is an independent set, such that G can be embedded into a graph of G by adding edges between certain vertices of N. If the partition of the vertices into probes and nonprobes is part of the input, then we call the graph a partitioned probe graph of G. In this paper, we provide a recognition algorithm for partitioned probe permutation graphs with time complexity O(n(2)) where n is the number of vertices in the input graph. We show that there are at most O(n(4)) minimal separators for a probe permutation graph. As a consequence, there exist polynomial-time algorithms solving TREEWIDTH and MINIMUM FILL-IN problems for probe permutation graphs.
引用
收藏
页码:494 / 504
页数:11
相关论文
共 50 条
  • [1] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2611 - 2619
  • [2] PERMUTATION GRAPHS AND TRANSITIVE GRAPHS
    EVEN, S
    LEMPEL, A
    PNUELI, A
    [J]. JOURNAL OF THE ACM, 1972, 19 (03) : 400 - &
  • [3] Succinct Permutation Graphs
    Konstantinos Tsakalidis
    Sebastian Wild
    Viktor Zamaraev
    [J]. Algorithmica, 2023, 85 : 509 - 543
  • [4] SPLIT PERMUTATION GRAPHS
    BOUAZA, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (11): : 971 - 977
  • [5] Split Permutation Graphs
    Korpelainen, Nicholas
    Lozin, Vadim V.
    Mayhill, Colin
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 633 - 646
  • [6] Split Permutation Graphs
    Nicholas Korpelainen
    Vadim V. Lozin
    Colin Mayhill
    [J]. Graphs and Combinatorics, 2014, 30 : 633 - 646
  • [7] Polar Permutation Graphs
    Ekim, Tinaz
    Heggernes, Pinar
    Meister, Daniel
    [J]. COMBINATORIAL ALGORITHMS, 2009, 5874 : 218 - +
  • [8] ON CYCLE PERMUTATION GRAPHS
    RINGEISEN, RD
    [J]. DISCRETE MATHEMATICS, 1984, 51 (03) : 265 - 275
  • [9] PLANAR PERMUTATION GRAPHS
    CHARTRAND, G
    HARARY, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1967, 3 (04): : 433 - +
  • [10] On diameter of permutation graphs
    Gu, WZ
    [J]. NETWORKS, 1999, 33 (03) : 161 - 166