Split Permutation Graphs

被引:0
|
作者
Nicholas Korpelainen
Vadim V. Lozin
Colin Mayhill
机构
[1] The Open University,Department of Mathematics and Statistics
[2] University of Warwick,DIMAP, Mathematics Institute
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Split graphs; Permutation graphs; Clique-width; Well-quasi-order;
D O I
暂无
中图分类号
学科分类号
摘要
The class of split permutation graphs is the intersection of two important classes, the split graphs and permutation graphs. It also contains an important subclass, the threshold graphs. The class of threshold graphs enjoys many nice properties. In particular, these graphs have bounded clique-width and they are well-quasi-ordered by the induced subgraph relation. It is known that neither of these two properties is extendable to split graphs or to permutation graphs. In the present paper, we study the question of extendability of these two properties to split permutation graphs. We answer this question negatively with respect to both properties. Moreover, we conjecture that with respect to both of them the split permutation graphs constitute a critical class.
引用
收藏
页码:633 / 646
页数:13
相关论文
共 50 条
  • [1] SPLIT PERMUTATION GRAPHS
    BOUAZA, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (11): : 971 - 977
  • [2] Split Permutation Graphs
    Korpelainen, Nicholas
    Lozin, Vadim V.
    Mayhill, Colin
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 633 - 646
  • [3] On Finding Separators in Temporal Split and Permutation Graphs
    Maack, Nicolas
    Molter, Hendrik
    Niedermeier, Rolf
    Renken, Malte
    [J]. FUNDAMENTALS OF COMPUTATION THEORY, FCT 2021, 2021, 12867 : 385 - 398
  • [4] On finding separators in temporal split and permutation graphs
    Maack, Nicolas
    Molter, Hendrik
    Niedermeier, Rolf
    Renken, Malte
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2023, 135 : 1 - 14
  • [5] PERMUTATION GRAPHS AND TRANSITIVE GRAPHS
    EVEN, S
    LEMPEL, A
    PNUELI, A
    [J]. JOURNAL OF THE ACM, 1972, 19 (03) : 400 - &
  • [6] Succinct Permutation Graphs
    Konstantinos Tsakalidis
    Sebastian Wild
    Viktor Zamaraev
    [J]. Algorithmica, 2023, 85 : 509 - 543
  • [7] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2611 - 2619
  • [8] Polar Permutation Graphs
    Ekim, Tinaz
    Heggernes, Pinar
    Meister, Daniel
    [J]. COMBINATORIAL ALGORITHMS, 2009, 5874 : 218 - +
  • [9] ON CYCLE PERMUTATION GRAPHS
    RINGEISEN, RD
    [J]. DISCRETE MATHEMATICS, 1984, 51 (03) : 265 - 275
  • [10] PLANAR PERMUTATION GRAPHS
    CHARTRAND, G
    HARARY, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1967, 3 (04): : 433 - +