Polar Permutation Graphs

被引:0
|
作者
Ekim, Tinaz [1 ]
Heggernes, Pinar [2 ]
Meister, Daniel [2 ]
机构
[1] Bogazici Univ, Dept Ind Engn, Istanbul, Turkey
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
来源
COMBINATORIAL ALGORITHMS | 2009年 / 5874卷
关键词
INDEPENDENT SETS; CHORDAL GRAPHS; LINEAR-TIME; DECOMPOSITION; TREEWIDTH; COGRAPHS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Polar graphs generalise bipartite, cobipartite, split graphs, and they constitute a special type of matrix partitions. A graph is polar if its vertex set can be partitioned into two, such that one part induces a complete multipartite graph and the other part induces a disjoint union of complete graphs. Deciding whether a given arbitrary graph is polar, is an NP-complete problem. Here we show that for permutation graphs this problem can be solved in polynomial time. The result is surprising, as related problems like achromatic number and cochromatic number are NP-complete on permutation graphs. We give a polynomial-time algorithm for recognising graphs that are both permutation and polar. Prior to our result, polarity has been resolved only for chordal graphs and cographs.
引用
收藏
页码:218 / +
页数:3
相关论文
共 50 条
  • [1] Polar permutation graphs are polynomial-time recognisable
    Ekim, Tinaz
    Heggernes, Pinar
    Meister, Daniel
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (03) : 576 - 592
  • [2] PERMUTATION GRAPHS AND TRANSITIVE GRAPHS
    EVEN, S
    LEMPEL, A
    PNUELI, A
    [J]. JOURNAL OF THE ACM, 1972, 19 (03) : 400 - &
  • [3] Succinct Permutation Graphs
    Konstantinos Tsakalidis
    Sebastian Wild
    Viktor Zamaraev
    [J]. Algorithmica, 2023, 85 : 509 - 543
  • [4] SPLIT PERMUTATION GRAPHS
    BOUAZA, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (11): : 971 - 977
  • [5] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2611 - 2619
  • [6] Split Permutation Graphs
    Korpelainen, Nicholas
    Lozin, Vadim V.
    Mayhill, Colin
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 633 - 646
  • [7] Split Permutation Graphs
    Nicholas Korpelainen
    Vadim V. Lozin
    Colin Mayhill
    [J]. Graphs and Combinatorics, 2014, 30 : 633 - 646
  • [8] ON CYCLE PERMUTATION GRAPHS
    RINGEISEN, RD
    [J]. DISCRETE MATHEMATICS, 1984, 51 (03) : 265 - 275
  • [9] PLANAR PERMUTATION GRAPHS
    CHARTRAND, G
    HARARY, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1967, 3 (04): : 433 - +
  • [10] On diameter of permutation graphs
    Gu, WZ
    [J]. NETWORKS, 1999, 33 (03) : 161 - 166