Minimal Obstructions for Partial Representations of Interval Graphs

被引:6
|
作者
Klavik, Pavel [1 ]
Saumell, Maria [2 ,3 ]
机构
[1] Charles Univ Prague, Inst Comp Sci, Prague, Czech Republic
[2] Univ W Bohemia, Dept Math, Plzen, Czech Republic
[3] Univ W Bohemia, European Ctr Excellence NTIS, Plzen, Czech Republic
来源
关键词
EXTENDING PARTIAL REPRESENTATIONS; INCIDENCE MATRICES; PLANARITY;
D O I
10.1007/978-3-319-13075-0_32
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. In this paper, we characterize the minimal obstructions which make a partial representation non-extendible. This generalizes Lekkerkerker and Boland's characterization of minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to the first polynomial-time certifying algorithm for partial representation extension of intersection graphs.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 50 条
  • [1] Minimal Obstructions for Partial Representations of Interval Graphs
    Klavik, Pavel
    Saumell, Maria
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [2] Minimal obstructions for partial representations of interval graphs
    [J]. Klavík, Pavel (klavik@iuuk.mff.cuni.cz), 1600, Springer Verlag (8889):
  • [3] Extending Partial Representations of Interval Graphs
    Klavik, Pavel
    Kratochvil, Jan
    Otachi, Yota
    Saitoh, Toshiki
    Vyskoil, Tomas
    [J]. ALGORITHMICA, 2017, 78 (03) : 945 - 967
  • [4] Extending Partial Representations of Interval Graphs
    Klavik, Pavel
    Kratochvil, Jan
    Vyskocil, Tomas
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 276 - 285
  • [5] Extending Partial Representations of Interval Graphs
    Pavel Klavík
    Jan Kratochvíl
    Yota Otachi
    Toshiki Saitoh
    Tomáš Vyskočil
    [J]. Algorithmica, 2017, 78 : 945 - 967
  • [6] Extending Partial Representations of Proper and Unit Interval Graphs
    Pavel Klavík
    Jan Kratochvíl
    Yota Otachi
    Ignaz Rutter
    Toshiki Saitoh
    Maria Saumell
    Tomáš Vyskočil
    [J]. Algorithmica, 2017, 77 : 1071 - 1104
  • [7] Extending Partial Representations of Proper and Unit Interval Graphs
    Klavik, Pavel
    Kratochvil, Jan
    Otachi, Yota
    Rutter, Ignaz
    Saitoh, Toshiki
    Saumell, Maria
    Vyskocil, Tomas
    [J]. ALGORITHMICA, 2017, 77 (04) : 1071 - 1104
  • [8] Extending Partial Representations of Proper and Unit Interval Graphs
    Klavik, Pavel
    Kratochvil, Jan
    Otachi, Yota
    Rutter, Ignaz
    Saitoh, Toshiki
    Saumell, Maria
    Vyskocil, Tomas
    [J]. ALGORITHM THEORY - SWAT 2014, 2014, 8503 : 253 - +
  • [9] On interval representations of graphs
    de Queiroz, Aquiles Braga
    Garnero, Valentin
    Ochem, Pascal
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 202 : 30 - 36
  • [10] INTERVAL REPRESENTATIONS OF PLANAR GRAPHS
    THOMASSEN, C
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (01) : 9 - 20