Analysis of batched service time data using Gaussian and semi-parametric kernel models

被引:0
|
作者
Wang, Xueying [1 ]
Zhou, Chunxiao [2 ]
Makambi, Kepher [1 ]
Yuan, Ao [1 ,2 ]
Ahn, Jaeil [1 ]
机构
[1] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USA
[2] NIH, Epidemiol & Biostat Sect, Dept Rehabil Med, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Batched data; latent observations; Gaussian model; kernel density estimator; parametric method; semi-parametric method;
D O I
10.1080/02664763.2019.1645820
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Batched data is a type of data where each observed data value is the sum of a number of grouped (batched) latent ones obtained under different conditions. Batched data arises in various practical backgrounds and is often found in social studies and management sector. The analysis of such data is analytically challenging due to its structural complexity. In this article, we describe how to analyze batched service time data, estimate the mean and variance of each batch that are latent. We in particular focus on the situation when the observed total time includes an unknown proportion of non-service time. To address this problem, we propose a Gaussian model for efficiency as well as a semi-parametric kernel density model for robustness. We evaluate the performance of both proposed methods through simulation studies and then applied our methods to analyze a batched data.
引用
收藏
页码:524 / 540
页数:17
相关论文
共 50 条
  • [1] KSPM: A Package For Kernel Semi-Parametric Models
    Schramm, Catherine
    Jacquemont, Sebastien
    Oualkacha, Karim
    Labbe, Aurelie
    Greenwood, Celia M. T.
    R JOURNAL, 2020, 12 (02): : 82 - 106
  • [2] Semi-parametric analysis of efficiency and productivity using Gaussian processes
    Emvalomatis, Grigorios
    ECONOMETRICS JOURNAL, 2020, 23 (01): : 48 - 67
  • [3] Market share analysis using semi-parametric attraction models
    Hruschka, H
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 138 (01) : 212 - 225
  • [4] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [5] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar, Brajendra C.
    Jowaheer, Vandna
    Rao, R. Prabhakar
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (02): : 269 - 303
  • [6] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar B.C.
    Jowaheer V.
    Rao R.P.
    Sankhya A, 2016, 78 (2): : 269 - 303
  • [7] Semi-parametric methods for longitudinal data analysis
    Altman, N
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 49 - 57
  • [8] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [9] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249
  • [10] Semi-parametric training of autoencoders with Gaussian kernel smoothed topology learning neural networks
    Zhiyang Xiang
    Changshou Deng
    Xueting Xiang
    Mali Yu
    Jing Xiong
    Neural Computing and Applications, 2020, 32 : 4933 - 4950