Analysis of batched service time data using Gaussian and semi-parametric kernel models

被引:0
|
作者
Wang, Xueying [1 ]
Zhou, Chunxiao [2 ]
Makambi, Kepher [1 ]
Yuan, Ao [1 ,2 ]
Ahn, Jaeil [1 ]
机构
[1] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USA
[2] NIH, Epidemiol & Biostat Sect, Dept Rehabil Med, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Batched data; latent observations; Gaussian model; kernel density estimator; parametric method; semi-parametric method;
D O I
10.1080/02664763.2019.1645820
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Batched data is a type of data where each observed data value is the sum of a number of grouped (batched) latent ones obtained under different conditions. Batched data arises in various practical backgrounds and is often found in social studies and management sector. The analysis of such data is analytically challenging due to its structural complexity. In this article, we describe how to analyze batched service time data, estimate the mean and variance of each batch that are latent. We in particular focus on the situation when the observed total time includes an unknown proportion of non-service time. To address this problem, we propose a Gaussian model for efficiency as well as a semi-parametric kernel density model for robustness. We evaluate the performance of both proposed methods through simulation studies and then applied our methods to analyze a batched data.
引用
收藏
页码:524 / 540
页数:17
相关论文
共 50 条
  • [41] Semi-parametric Bayesian models for heterogeneous degradation data: An application to laser data
    Santos, Cristiano C.
    Loschi, Rosangela H.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 202
  • [42] Identification and estimation of semi-parametric censored dynamic panel data models of short time periods
    Hu, Yingyao
    Shiu, Ji-Liang
    ECONOMETRICS JOURNAL, 2018, 21 (01): : 55 - 85
  • [43] Semi-parametric benchmark dose analysis with monotone additive models
    Stringer, Alex
    Hocagil, Tugba Akkaya
    Cook, Richard J.
    Ryan, Louise M.
    Jacobson, Sandra W.
    Jacobson, Joseph L.
    BIOMETRICS, 2024, 80 (03)
  • [44] Bayesian analysis of semi-parametric Cox models with latent variables
    Cai, Jingheng
    Liang, Chenyi
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (07) : 2150 - 2164
  • [45] Semi-parametric Gaussian Process for Robot System Identification
    Wu, Tingfan
    Movellan, Javier
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 725 - 731
  • [46] Inferences in semi-parametric dynamic mixed models for longitudinal count data
    Zheng, Nan
    Sutradhar, Brajendra C.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (01) : 215 - 247
  • [47] Modern variable selection for longitudinal semi-parametric models with missing data
    Kowalski, J.
    Hao, S.
    Chen, T.
    Liang, Y.
    Liu, J.
    Ge, L.
    Feng, C.
    Tu, X. M.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) : 2548 - 2562
  • [48] Using semi-parametric methods in an analysis of earnings mobility
    Ulrick, Shawn W.
    ECONOMETRICS JOURNAL, 2008, 11 (03): : 478 - 498
  • [49] Soil analysis using the semi-parametric NAA technique
    Zamboni, C. B.
    Silveira, M. A. G.
    Medina, N. H.
    VII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2007, 947 : 493 - +
  • [50] Inferences in semi-parametric dynamic mixed models for longitudinal count data
    Nan Zheng
    Brajendra C. Sutradhar
    Annals of the Institute of Statistical Mathematics, 2018, 70 : 215 - 247