Analysis of batched service time data using Gaussian and semi-parametric kernel models

被引:0
|
作者
Wang, Xueying [1 ]
Zhou, Chunxiao [2 ]
Makambi, Kepher [1 ]
Yuan, Ao [1 ,2 ]
Ahn, Jaeil [1 ]
机构
[1] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USA
[2] NIH, Epidemiol & Biostat Sect, Dept Rehabil Med, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Batched data; latent observations; Gaussian model; kernel density estimator; parametric method; semi-parametric method;
D O I
10.1080/02664763.2019.1645820
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Batched data is a type of data where each observed data value is the sum of a number of grouped (batched) latent ones obtained under different conditions. Batched data arises in various practical backgrounds and is often found in social studies and management sector. The analysis of such data is analytically challenging due to its structural complexity. In this article, we describe how to analyze batched service time data, estimate the mean and variance of each batch that are latent. We in particular focus on the situation when the observed total time includes an unknown proportion of non-service time. To address this problem, we propose a Gaussian model for efficiency as well as a semi-parametric kernel density model for robustness. We evaluate the performance of both proposed methods through simulation studies and then applied our methods to analyze a batched data.
引用
收藏
页码:524 / 540
页数:17
相关论文
共 50 条
  • [21] Semi-parametric extended Poisson process models for count data
    Heather M. Podlich
    Malcolm J. Faddy
    Gordon K. Smyth
    Statistics and Computing, 2004, 14 : 311 - 321
  • [22] Semi-parametric Dynamic Models for Longitudinal Ordinal Categorical Data
    Sutradhar, Brajendra C.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2018, 80 (01): : 80 - 109
  • [23] INFERENCE IN SEMI-PARAMETRIC DYNAMIC MODELS FOR REPEATED COUNT DATA
    Sutradhar, Brajendra C.
    Warriyar, K. V. Vineetha
    Zheng, Nan
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (03) : 397 - 434
  • [24] Semi-parametric analysis of multi-rater data
    Rogers, Simon
    Girolami, Mark
    Polajnar, Tamara
    STATISTICS AND COMPUTING, 2010, 20 (03) : 317 - 334
  • [25] Testing linearity in semi-parametric functional data analysis
    Aneiros-Perez, German
    Vieu, Philippe
    COMPUTATIONAL STATISTICS, 2013, 28 (02) : 413 - 434
  • [26] Semi-parametric analysis of multi-rater data
    Simon Rogers
    Mark Girolami
    Tamara Polajnar
    Statistics and Computing, 2010, 20 : 317 - 334
  • [27] Testing linearity in semi-parametric functional data analysis
    Germán Aneiros-Pérez
    Philippe Vieu
    Computational Statistics, 2013, 28 : 413 - 434
  • [28] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [29] Parametric versus semi-parametric models for the analysis of correlated survival data: A case study in veterinary epidemiology
    Shoukri, MM
    Attanasio, M
    Sargeant, JM
    JOURNAL OF APPLIED STATISTICS, 1998, 25 (03) : 357 - 374
  • [30] Variable selection in semi-parametric models
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Holloway, John
    Karmaus, Wilfried
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1736 - 1752