Semi-parametric extended Poisson process models for count data

被引:0
|
作者
Heather M. Podlich
Malcolm J. Faddy
Gordon K. Smyth
机构
[1] The University of Queensland,School of Land and Food Sciences
[2] Queensland University of Technology,School of Mathematical Sciences
[3] Walter and Eliza Hall Institute of Medical Research,undefined
来源
Statistics and Computing | 2004年 / 14卷
关键词
count data; over and underdispersion; covariate effects; extended Poisson process model; penalized likelihood;
D O I
暂无
中图分类号
学科分类号
摘要
A general framework for the analysis of count data (with covariates) is proposed using formulations for the transition rates of a state-dependent birth process. The form for the transition rates incorporates covariates proportionally, with the residual distribution determined from a smooth non-parametric state-dependent form. Computation of the resulting probabilities is discussed, leading to model estimation using a penalized likelihood function. Two data sets are used as illustrative examples, one representing underdispersed Poisson-like data and the other overdispersed binomial-like data.
引用
收藏
页码:311 / 321
页数:10
相关论文
共 50 条
  • [1] Semi-parametric extended Poisson process models for count data
    Podlich, HM
    Faddy, MJ
    Smyth, GK
    [J]. STATISTICS AND COMPUTING, 2004, 14 (04) : 311 - 321
  • [2] Semi-parametric Models for Longitudinal Count, Binary and Multinomial Data
    Sutradhar, Brajendra C.
    [J]. ADVANCES AND CHALLENGES IN PARAMETRIC AND SEMI-PARAMETRIC ANALYSIS FOR CORRELATED DATA, 2016, 218 : 199 - 229
  • [3] INFERENCE IN SEMI-PARAMETRIC DYNAMIC MODELS FOR REPEATED COUNT DATA
    Sutradhar, Brajendra C.
    Warriyar, K. V. Vineetha
    Zheng, Nan
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (03) : 397 - 434
  • [4] Inferences in semi-parametric dynamic mixed models for longitudinal count data
    Zheng, Nan
    Sutradhar, Brajendra C.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (01) : 215 - 247
  • [5] Inferences in semi-parametric dynamic mixed models for longitudinal count data
    Nan Zheng
    Brajendra C. Sutradhar
    [J]. Annals of the Institute of Statistical Mathematics, 2018, 70 : 215 - 247
  • [6] A Semi-parametric Model for Longitudinal Count Data
    Yin, Kang
    Jin, Tian
    [J]. ENERGY AND POWER TECHNOLOGY, PTS 1 AND 2, 2013, 805-806 : 1921 - +
  • [7] Identification of semi-parametric hybrid process models
    Yang, Aidong
    Martin, Elaine
    Morris, Julian
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 63 - 70
  • [8] Semi-parametric copula sample selection models for count responses
    Marra, Giampiero
    Wyszynski, Karol
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 110 - 129
  • [9] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    [J]. STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [10] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar B.C.
    Jowaheer V.
    Rao R.P.
    [J]. Sankhya A, 2016, 78 (2): : 269 - 303