Analysis of batched service time data using Gaussian and semi-parametric kernel models

被引:0
|
作者
Wang, Xueying [1 ]
Zhou, Chunxiao [2 ]
Makambi, Kepher [1 ]
Yuan, Ao [1 ,2 ]
Ahn, Jaeil [1 ]
机构
[1] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USA
[2] NIH, Epidemiol & Biostat Sect, Dept Rehabil Med, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Batched data; latent observations; Gaussian model; kernel density estimator; parametric method; semi-parametric method;
D O I
10.1080/02664763.2019.1645820
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Batched data is a type of data where each observed data value is the sum of a number of grouped (batched) latent ones obtained under different conditions. Batched data arises in various practical backgrounds and is often found in social studies and management sector. The analysis of such data is analytically challenging due to its structural complexity. In this article, we describe how to analyze batched service time data, estimate the mean and variance of each batch that are latent. We in particular focus on the situation when the observed total time includes an unknown proportion of non-service time. To address this problem, we propose a Gaussian model for efficiency as well as a semi-parametric kernel density model for robustness. We evaluate the performance of both proposed methods through simulation studies and then applied our methods to analyze a batched data.
引用
收藏
页码:524 / 540
页数:17
相关论文
共 50 条
  • [31] Semi-parametric adjustment to computer models
    Wang, Yan
    Tuo, Rui
    STATISTICS, 2020, 54 (06) : 1255 - 1275
  • [32] Observed information in semi-parametric models
    Murphy, SA
    Van der Vaart, AW
    BERNOULLI, 1999, 5 (03) : 381 - 412
  • [33] Semi-parametric Models for Visual Odometry
    Guizilini, Vitor
    Ramos, Fabio
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3482 - 3489
  • [34] Semi-Parametric Models - An Application in Medicine
    Pereira, J. A.
    Pereira, A. L.
    Oliveira, T. A.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [35] Validation tests for semi-parametric models
    Meintanis, Simos G.
    Einbeck, Jochen
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (01) : 131 - 146
  • [36] Hyperbolic and semi-parametric models in finance
    Bingham, NH
    Kiesel, R
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 275 - 280
  • [37] Semi-parametric models for satisfaction with income
    Charles Bellemare
    Bertrand Melenberg
    Arthur van Soest
    Portuguese Economic Journal, 2002, 1 (2) : 181 - 203
  • [38] Analysis of failure time using threshold regression with semi-parametric varying coefficients
    Li, Jialiang
    Lee, Mei-Ling Ting
    STATISTICA NEERLANDICA, 2011, 65 (02) : 164 - 182
  • [39] SEMI-PARAMETRIC GRAPH KERNEL-BASED RECONSTRUCTION
    Ioannidis, Vassilis N.
    Nikolakopoulos, Athanasios N.
    Giannakis, Georgios B.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 588 - 592
  • [40] Semi-parametric signal analysis
    Goode, AJ
    Glendinning, RH
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 622 - 625