KSPM: A Package For Kernel Semi-Parametric Models

被引:0
|
作者
Schramm, Catherine [1 ]
Jacquemont, Sebastien [2 ]
Oualkacha, Karim [3 ]
Labbe, Aurelie [4 ]
Greenwood, Celia M. T. [5 ,6 ]
机构
[1] Univ Montreal, Res Ctr, Ste Justine Hosp, Lady Davis Inst Med Res,Jewish Gen Hosp, Montreal, PQ, Canada
[2] Univ Montreal, Res Ctr, Ste Justine Hosp, Montreal, PQ, Canada
[3] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
[4] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada
[5] McGill Univ, Lady Davis Inst Med Res, Gerald Bronfman Dept Oncol, Jewish Gen Hosp,Dept Epidemiol Biostat & Occupat, Montreal, PQ, Canada
[6] McGill Univ, Dept Human Genet, Montreal, PQ, Canada
来源
R JOURNAL | 2020年 / 12卷 / 02期
关键词
ASSOCIATION TEST;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Kernel semi-parametric models and their equivalence with linear mixed models provide analysts with the flexibility of machine learning methods and a foundation for inference and tests of hypothesis. These models are not impacted by the number of predictor variables, since the kernel trick transforms them to a kernel matrix whose size only depends on the number of subjects. Hence, methods based on this model are appealing and numerous, however only a few R programs are available and none includes a complete set of features. Here, we present the KSPM package to fit the kernel semi-parametric model and its extensions in a unified framework. KSPM allows multiple kernels and unlimited interactions in the same model. It also includes predictions, statistical tests, variable selection procedure and graphical tools for diagnostics and interpretation of variable effects. Currently KSPM is implemented for continuous dependent variables but could be extended to binary or survival outcomes.
引用
收藏
页码:82 / 106
页数:25
相关论文
共 50 条
  • [1] truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models
    Karlsson, Maria
    Lindmark, Anita
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (14): : 1 - 19
  • [2] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [3] Semi-parametric adjustment to computer models
    Wang, Yan
    Tuo, Rui
    [J]. STATISTICS, 2020, 54 (06) : 1255 - 1275
  • [4] Variable selection in semi-parametric models
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Holloway, John
    Karmaus, Wilfried
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1736 - 1752
  • [5] Semi-Parametric Models - An Application in Medicine
    Pereira, J. A.
    Pereira, A. L.
    Oliveira, T. A.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [6] Validation tests for semi-parametric models
    Meintanis, Simos G.
    Einbeck, Jochen
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (01) : 131 - 146
  • [7] Observed information in semi-parametric models
    Murphy, SA
    Van der Vaart, AW
    [J]. BERNOULLI, 1999, 5 (03) : 381 - 412
  • [8] Hyperbolic and semi-parametric models in finance
    Bingham, NH
    Kiesel, R
    [J]. DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 275 - 280
  • [9] Semi-parametric Models for Visual Odometry
    Guizilini, Vitor
    Ramos, Fabio
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3482 - 3489
  • [10] Semi-parametric models for satisfaction with income
    Charles Bellemare
    Bertrand Melenberg
    Arthur van Soest
    [J]. Portuguese Economic Journal, 2002, 1 (2) : 181 - 203