Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data

被引:0
|
作者
Amir AghaKouchak
Nasrin Nasrollahi
机构
[1] University of Stuttgart,Institute of Hydraulic Engineering
[2] University of Louisiana at Lafayette,Department of Civil Engineering
来源
关键词
Extreme rainfall; Extreme value index; Semi-parametric and parametric estimators; Generalized Pareto Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.
引用
收藏
页码:1229 / 1249
页数:20
相关论文
共 50 条
  • [1] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    [J]. WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [2] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    [J]. STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [3] Inference in semi-parametric spline mixed models for longitudinal data
    Sinha S.K.
    Sattar A.
    [J]. METRON, 2015, 73 (3) : 377 - 395
  • [4] INFERENCE IN SEMI-PARAMETRIC DYNAMIC MODELS FOR REPEATED COUNT DATA
    Sutradhar, Brajendra C.
    Warriyar, K. V. Vineetha
    Zheng, Nan
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (03) : 397 - 434
  • [5] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Wendy Ling Shinyie
    Noriszura Ismail
    Abdul Aziz Jemain
    [J]. Water Resources Management, 2013, 27 : 2325 - 2352
  • [6] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Shinyie, Wendy Ling
    Ismail, Noriszura
    Jemain, Abdul Aziz
    [J]. WATER RESOURCES MANAGEMENT, 2013, 27 (07) : 2325 - 2352
  • [7] Statistical inference on semi-parametric partial linear additive models
    Wei, Chuan-hua
    Liu, Chunling
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 809 - 823
  • [8] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar B.C.
    Jowaheer V.
    Rao R.P.
    [J]. Sankhya A, 2016, 78 (2): : 269 - 303
  • [9] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar, Brajendra C.
    Jowaheer, Vandna
    Rao, R. Prabhakar
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (02): : 269 - 303
  • [10] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    [J]. Methodology and Computing in Applied Probability, 2023, 25