Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data

被引:0
|
作者
Amir AghaKouchak
Nasrin Nasrollahi
机构
[1] University of Stuttgart,Institute of Hydraulic Engineering
[2] University of Louisiana at Lafayette,Department of Civil Engineering
来源
关键词
Extreme rainfall; Extreme value index; Semi-parametric and parametric estimators; Generalized Pareto Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Extreme rainfall events and the clustering of extreme values provide fundamental information which can be used for the risk assessment of extreme floods. Event probability can be estimated using the extreme value index (γ) which describes the behavior of the upper tail and measures the degree of extreme value clustering. In this paper, various semi-parametric and parametric extreme value index estimators are implemented in order to characterize the tail behavior of long-term daily rainfall time series. The results obtained from different estimators are then used to extrapolate the distribution function of extreme values. Extrapolation can be employed to estimate the occurrence probability of rainfall events above a given threshold. The results indicated that different estimators may result in considerable differences in extreme value index estimates. The uncertainty of the extreme value estimators is also investigated using the bootstrap technique. The analyses showed that the parametric methods are superior to the semi-parametric approaches. In particular, the likelihood and Two-Step estimators are preferred as they are found to be more robust and consistent for practical application.
引用
收藏
页码:1229 / 1249
页数:20
相关论文
共 50 条
  • [21] Validation tests for semi-parametric models
    Meintanis, Simos G.
    Einbeck, Jochen
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (01) : 131 - 146
  • [22] Hyperbolic and semi-parametric models in finance
    Bingham, NH
    Kiesel, R
    [J]. DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 275 - 280
  • [23] Semi-parametric models for satisfaction with income
    Charles Bellemare
    Bertrand Melenberg
    Arthur van Soest
    [J]. Portuguese Economic Journal, 2002, 1 (2) : 181 - 203
  • [24] Observed information in semi-parametric models
    Murphy, SA
    Van der Vaart, AW
    [J]. BERNOULLI, 1999, 5 (03) : 381 - 412
  • [25] Semi-parametric Models for Visual Odometry
    Guizilini, Vitor
    Ramos, Fabio
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 3482 - 3489
  • [26] Shrinkage and penalized estimation in semi-parametric models with multicollinear data
    Yuzbasi, Bahadir
    Ahmed, S. Ejaz
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (17) : 3543 - 3561
  • [27] Semi-parametric Models for Longitudinal Count, Binary and Multinomial Data
    Sutradhar, Brajendra C.
    [J]. ADVANCES AND CHALLENGES IN PARAMETRIC AND SEMI-PARAMETRIC ANALYSIS FOR CORRELATED DATA, 2016, 218 : 199 - 229
  • [28] Semi-parametric marginal models for hierarchical data and their corresponding full models
    Molenberghs, Geert
    Kenward, Michael G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 585 - 597
  • [29] Semi-parametric extended Poisson process models for count data
    Podlich, HM
    Faddy, MJ
    Smyth, GK
    [J]. STATISTICS AND COMPUTING, 2004, 14 (04) : 311 - 321
  • [30] Semi-parametric extended Poisson process models for count data
    Heather M. Podlich
    Malcolm J. Faddy
    Gordon K. Smyth
    [J]. Statistics and Computing, 2004, 14 : 311 - 321