Analyzing the Robustness of Semi-Parametric Duration Models for the Study of Repeated Events

被引:9
|
作者
Box-Steffensmeier, Janet M. [1 ]
Linn, Suzanna [2 ]
Smidt, Corwin D. [3 ]
机构
[1] Ohio State Univ, Dept Polit Sci, Columbus, OH 43210 USA
[2] Penn State Univ, Dept Polit Sci, Pond Lab 320, University Pk, PA 16802 USA
[3] Michigan State Univ, Dept Polit Sci, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
FAILURE TIME DATA; INTERNATIONAL MEDIATION; STATISTICAL-METHODS; REGRESSION-ANALYSIS; SURVIVAL; POLICY; INTERVAL; FRAILTY; TESTS; 1ST;
D O I
10.1093/pan/mpt015
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
Estimators within the Cox family are often used to estimate models for repeated events. Yet, there is much we still do not know about the performance of these estimators. In particular, we do not know how they perform given time dependence, different censoring rates, and a varying number of events and sample sizes. We use Monte Carlo simulations to demonstrate the performance of a variety of popular semi-parametric estimators as these data aspects change and under conditions of event dependence and heterogeneity, both, or neither. We conclude that the conditional frailty model outperforms other standard estimators under a wide array of data-generating processes, and data limitations rarely alter its performance.
引用
收藏
页码:183 / 204
页数:22
相关论文
共 50 条
  • [31] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    TEST, 2021, 30 : 980 - 1003
  • [32] KSPM: A Package For Kernel Semi-Parametric Models
    Schramm, Catherine
    Jacquemont, Sebastien
    Oualkacha, Karim
    Labbe, Aurelie
    Greenwood, Celia M. T.
    R JOURNAL, 2020, 12 (02): : 82 - 106
  • [33] A semi-parametric stochastic generator for bivariate extreme events
    Marcon, Giulia
    Naveau, Philippe
    Padoan, Simone
    STAT, 2017, 6 (01): : 184 - 201
  • [34] A METHOD FOR COMPARING SEMI-PARAMETRIC MODELS WITH PARAMETRIC MODELS IN COMPETING RISKS ANALYSIS
    WAN, J
    COMPUTERS AND BIOMEDICAL RESEARCH, 1989, 22 (06): : 565 - 574
  • [35] Analyzing longitudinal circular data by projected normal models: a semi-parametric approach based on finite mixture models
    Antonello Maruotti
    Environmental and Ecological Statistics, 2016, 23 : 257 - 277
  • [36] Analyzing longitudinal circular data by projected normal models: a semi-parametric approach based on finite mixture models
    Maruotti, Antonello
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2016, 23 (02) : 257 - 277
  • [37] Estimating a semi-parametric duration model without specifying heterogeneity
    Hausman, Jerry A.
    Woutersen, Tiemen
    JOURNAL OF ECONOMETRICS, 2014, 178 : 114 - 131
  • [38] Double robustness for complier parameters and a semi-parametric test for complier characteristics
    Singh, Rahul
    Sun, Liyang
    ECONOMETRICS JOURNAL, 2024, 27 (01): : 1 - 20
  • [39] Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models
    Wey, Andrew
    Connett, John
    Rudser, Kyle
    BIOSTATISTICS, 2015, 16 (03) : 537 - 549
  • [40] Generalized linear models in software reliability: parametric & semi-parametric approaches
    IMAG - Lab de Modelisation et Calcul, Grenoble, Germany
    IEEE Trans Reliab, 3 (463-470):