Analyzing the Robustness of Semi-Parametric Duration Models for the Study of Repeated Events

被引:9
|
作者
Box-Steffensmeier, Janet M. [1 ]
Linn, Suzanna [2 ]
Smidt, Corwin D. [3 ]
机构
[1] Ohio State Univ, Dept Polit Sci, Columbus, OH 43210 USA
[2] Penn State Univ, Dept Polit Sci, Pond Lab 320, University Pk, PA 16802 USA
[3] Michigan State Univ, Dept Polit Sci, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
FAILURE TIME DATA; INTERNATIONAL MEDIATION; STATISTICAL-METHODS; REGRESSION-ANALYSIS; SURVIVAL; POLICY; INTERVAL; FRAILTY; TESTS; 1ST;
D O I
10.1093/pan/mpt015
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
Estimators within the Cox family are often used to estimate models for repeated events. Yet, there is much we still do not know about the performance of these estimators. In particular, we do not know how they perform given time dependence, different censoring rates, and a varying number of events and sample sizes. We use Monte Carlo simulations to demonstrate the performance of a variety of popular semi-parametric estimators as these data aspects change and under conditions of event dependence and heterogeneity, both, or neither. We conclude that the conditional frailty model outperforms other standard estimators under a wide array of data-generating processes, and data limitations rarely alter its performance.
引用
收藏
页码:183 / 204
页数:22
相关论文
共 50 条
  • [41] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [42] Ensemble of Semi-Parametric Models for IoT Fog Modeling
    Jan, Ibny
    Iranmanesh, Saeid
    Sajeev, A. S. M.
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2995 - 2998
  • [43] A semi-parametric estimator for censored selection models with endogeneity
    Lee, MJ
    Vella, F
    JOURNAL OF ECONOMETRICS, 2006, 130 (02) : 235 - 252
  • [44] Measurement errors in semi-parametric generalised regression models
    Hattab, Mohammad W.
    Ruppert, David
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (04) : 344 - 363
  • [45] Minimum-entropy estimation in semi-parametric models
    Wolsztynski, E
    Thierry, E
    Pronzato, L
    SIGNAL PROCESSING, 2005, 85 (05) : 937 - 949
  • [46] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [47] Generalized linear models in software reliability: Parametric & semi-parametric approaches
    ElAroui, MA
    Lavergne, C
    IEEE TRANSACTIONS ON RELIABILITY, 1996, 45 (03) : 463 - 470
  • [48] A comparison of parametric and semi-parametric survival models with artificial neural networks
    Mokarram, Reza
    Emadi, Mahdi
    Rad, Arezou Habibi
    Nooghabi, Mahdi Jabbari
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) : 738 - 746
  • [49] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249
  • [50] Semi-Parametric Models for Negative Binomial Panel Data
    Sutradhar, Brajendra C.
    Jowaheer, Vandna
    Rao, R. Prabhakar
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (02): : 269 - 303