Minimum-entropy estimation in semi-parametric models

被引:34
|
作者
Wolsztynski, E [1 ]
Thierry, E [1 ]
Pronzato, L [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab 13S, CNRS, F-06903 Sophia Antipolis, France
关键词
adaptive estimation; efficiency; entropy; parameter estimation; semi-parametric models; robustness; outliers;
D O I
10.1016/j.sigpro.2004.11.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In regression problems where the density f of the errors is not known, maximum likelihood is unapplicable, and the use of alternative techniques like least squares or robust M-estimation generally implies inefficient estimation of the parameters. The search for adaptive estimators, that is, estimators that remain asymptotically efficient independently of the knowledge off, has received a lot of attention, see in particular (Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1956, pp. 187; Ann. Stat. 3(2) (1975) 267; Ann. Stat. 10 (1982) 647) and the review paper (Econometric Rev. 3(2) (1984) 145). The paper considers a minimum-entropy parametric estimator that minimizes an estimate of the entropy of the distribution of the residuals. A first construction connects the method with the Stone-Bickel approach, where the estimation is decomposed into two steps. Then we consider a direct approach that does not involve any preliminary root n-consistent estimator. Some results are given that illustrate the good performance of minimum-entropy estimation for reasonable sample sizes when compared to standard methods, in particular concerning robustness in the presence of outliers. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:937 / 949
页数:13
相关论文
共 50 条
  • [1] Minimum entropy estimation in semi-parametric models:: a candidate for adaptive estimation?
    Pronzato, L
    Thierry, É
    Wolsztynski, É
    [J]. MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 125 - 132
  • [2] Minimum entropy estimation in semi parametric models
    Wolsztynski, K
    Thierry, K
    Pronzato, L
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 1045 - 1048
  • [3] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [4] On the kernel selection for minimum-entropy estimation
    de la Rosa, JI
    Fleury, G
    [J]. IMTC 2002: PROCEEDINGS OF THE 19TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1 & 2, 2002, : 1205 - 1210
  • [5] Nonparametric estimation in semi-parametric univariate mixture models
    Cruz-Medina, IR
    Hettmansperger, TP
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (07) : 513 - 524
  • [6] Semi-Parametric Estimation for Non-Gaussian Non-Minimum Phase ARMA Models
    Davis, Richard A.
    Zhang, Jing
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (03) : 251 - 272
  • [7] Semi-parametric estimation of non-separable models: a minimum distance from independence approach
    Komunjer, Ivana
    Santos, Andres
    [J]. ECONOMETRICS JOURNAL, 2010, 13 (03): : S28 - S55
  • [8] A minimum-entropy procedure for robust motion estimation
    Boltz, Sylvain
    Wolsztynski, Eric
    Debreuve, Eric
    Thierry, Eric
    Barlaud, Michel
    Pronzato, Luc
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1249 - +
  • [9] Semi-parametric estimation of shifts
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Maza, Elie
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 616 - 640
  • [10] Shrinkage and penalized estimation in semi-parametric models with multicollinear data
    Yuzbasi, Bahadir
    Ahmed, S. Ejaz
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (17) : 3543 - 3561