Minimum-entropy estimation in semi-parametric models

被引:34
|
作者
Wolsztynski, E [1 ]
Thierry, E [1 ]
Pronzato, L [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab 13S, CNRS, F-06903 Sophia Antipolis, France
关键词
adaptive estimation; efficiency; entropy; parameter estimation; semi-parametric models; robustness; outliers;
D O I
10.1016/j.sigpro.2004.11.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In regression problems where the density f of the errors is not known, maximum likelihood is unapplicable, and the use of alternative techniques like least squares or robust M-estimation generally implies inefficient estimation of the parameters. The search for adaptive estimators, that is, estimators that remain asymptotically efficient independently of the knowledge off, has received a lot of attention, see in particular (Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1956, pp. 187; Ann. Stat. 3(2) (1975) 267; Ann. Stat. 10 (1982) 647) and the review paper (Econometric Rev. 3(2) (1984) 145). The paper considers a minimum-entropy parametric estimator that minimizes an estimate of the entropy of the distribution of the residuals. A first construction connects the method with the Stone-Bickel approach, where the estimation is decomposed into two steps. Then we consider a direct approach that does not involve any preliminary root n-consistent estimator. Some results are given that illustrate the good performance of minimum-entropy estimation for reasonable sample sizes when compared to standard methods, in particular concerning robustness in the presence of outliers. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:937 / 949
页数:13
相关论文
共 50 条
  • [21] Semi-parametric estimation and forecasting for exogenous log-GARCH models
    Ming Chen
    Qiongxia Song
    [J]. TEST, 2016, 25 : 93 - 112
  • [22] Variable selection and estimation for semi-parametric multiple-index models
    Wang, Tao
    Xu, Peirong
    Zhu, Lixing
    [J]. BERNOULLI, 2015, 21 (01) : 242 - 275
  • [23] Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity
    Cathy W. S. Chen
    Richard Gerlach
    [J]. Computational Statistics, 2013, 28 : 1103 - 1131
  • [24] Asymptotically efficient estimation under semi-parametric random censorship models
    Dikta, Gerhard
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 124 : 10 - 24
  • [25] SEMI-PARAMETRIC ESTIMATION OF LINEAR COINTEGRATING MODELS WITH NONLINEAR CONTEMPORANEOUS ENDOGENEITY
    Sun, Yiguo
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (05) : 437 - 461
  • [26] Robust small area estimation under semi-parametric mixed models
    Rao, Jon N. K.
    Sinha, Sanjoy K.
    Dumitrescu, Laura
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (01): : 126 - 141
  • [27] Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity
    Chen, Cathy W. S.
    Gerlach, Richard
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1103 - 1131
  • [28] Semi-parametric estimation of partially linear single-index models
    Xia, YC
    Härdle, W
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (05) : 1162 - 1184
  • [29] Semi-parametric adjustment to computer models
    Wang, Yan
    Tuo, Rui
    [J]. STATISTICS, 2020, 54 (06) : 1255 - 1275
  • [30] Variable selection in semi-parametric models
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Holloway, John
    Karmaus, Wilfried
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1736 - 1752