Minimum-entropy estimation in semi-parametric models

被引:34
|
作者
Wolsztynski, E [1 ]
Thierry, E [1 ]
Pronzato, L [1 ]
机构
[1] Univ Nice Sophia Antipolis, Lab 13S, CNRS, F-06903 Sophia Antipolis, France
关键词
adaptive estimation; efficiency; entropy; parameter estimation; semi-parametric models; robustness; outliers;
D O I
10.1016/j.sigpro.2004.11.028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In regression problems where the density f of the errors is not known, maximum likelihood is unapplicable, and the use of alternative techniques like least squares or robust M-estimation generally implies inefficient estimation of the parameters. The search for adaptive estimators, that is, estimators that remain asymptotically efficient independently of the knowledge off, has received a lot of attention, see in particular (Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1956, pp. 187; Ann. Stat. 3(2) (1975) 267; Ann. Stat. 10 (1982) 647) and the review paper (Econometric Rev. 3(2) (1984) 145). The paper considers a minimum-entropy parametric estimator that minimizes an estimate of the entropy of the distribution of the residuals. A first construction connects the method with the Stone-Bickel approach, where the estimation is decomposed into two steps. Then we consider a direct approach that does not involve any preliminary root n-consistent estimator. Some results are given that illustrate the good performance of minimum-entropy estimation for reasonable sample sizes when compared to standard methods, in particular concerning robustness in the presence of outliers. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:937 / 949
页数:13
相关论文
共 50 条
  • [41] On optimal and minimum-entropy decoding
    Kleijn, WB
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 1671 - 1674
  • [42] The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems
    Chai, Shanglei
    Zhou, P.
    [J]. ENERGY ECONOMICS, 2018, 76 : 64 - 75
  • [43] Minimum-Entropy Couplings and Their Applications
    Cicalese, Ferdinando
    Gargano, Luisa
    Vaccaro, Ugo
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3436 - 3451
  • [44] INDEPENDENT COMPONENT ANALYSIS USING SEMI-PARAMETRIC DENSITY ESTIMATION VIA ENTROPY MAXIMIZATION
    Boukouvalas, Zois
    Levin-Schwartz, Yuri
    Mowakeaa, Rami
    Fu, Geng-Shen
    Adali, Tulay
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 403 - 407
  • [45] Outliers in Semi-Parametric Estimation of Treatment Effects
    Canavire-Bacarreza, Gustavo
    Castro Penarrieta, Luis
    Ugarte Ontiveros, Darwin
    [J]. ECONOMETRICS, 2021, 9 (02)
  • [46] Semi-parametric estimation of multivariate extreme expectiles
    Beck, Nicholas
    Di Bernardino, Elena
    Mailhot, Melina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184
  • [47] FLEXIBLE PARAMETRIC AND SEMI-PARAMETRIC NONMARKOV MULTI-STATE MODELS: ESTIMATION, PREDICTION & SIMULATION
    Crowther, M. J.
    [J]. VALUE IN HEALTH, 2023, 26 (12) : S401 - S401
  • [48] Estimation of reliability with semi-parametric modeling of degradation
    Bhuyan, Prajamitra
    Sengupta, Debasis
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 115 : 172 - 185
  • [49] Estimation of general semi-parametric quantile regression
    Fan, Yan
    Zhu, Lixing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (05) : 896 - 910
  • [50] Semi-parametric regression estimation of the tail index
    Jia, Mofei
    Taufer, Emanuele
    Dickson, Maria Michela
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 224 - 248