Semi-parametric estimation of multivariate extreme expectiles

被引:3
|
作者
Beck, Nicholas [1 ]
Di Bernardino, Elena [2 ]
Mailhot, Melina [3 ]
机构
[1] HEC Montreal, Dept Decis Sci, 3000 Chemin Cote St Catherine, Montreal, PQ H3T 2A7, Canada
[2] Univ Cote dAzur, Lab JA Dieudonne, UMR CNRS 7351, Parc Valrose, F-06108 Nice 2, France
[3] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
关键词
Dependence; Extreme value theory; Multivariate risk measures; Optimization; Semi-parametric estimation; BFGS METHOD; NONPARAMETRIC-ESTIMATION; GENERALIZED QUANTILES; GLOBAL CONVERGENCE; RISK MEASURES; TAIL; DEPENDENCE; SHORTFALL;
D O I
10.1016/j.jmva.2021.104758
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on semi-parametric estimation of multivariate expectiles for extreme levels of risk. Multivariate expectiles and their extremes have been the focus of plentiful research in recent years. In particular, it has been noted that due to the difficulty in estimating these values for elevated levels of risk, an alternative formulation of the underlying optimization problem would be necessary. However, in such a scenario, estimators have only been provided for the limiting cases of tail dependence: independence and comonotonicity. In this paper, we extend the estimation of multivariate extreme expectiles (MEEs) by providing a consistent estimation scheme for random vectors with any arbitrary dependence structure. Specifically, we show that if the upper tail dependence function, tail index, and tail ratio can be consistently estimated, then one would be able to accurately estimate MEEs. The finite-sample performance of this methodology is illustrated using both simulated and real data. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Dynamic semi-parametric factor model for functional expectiles
    Burdejova, Petra
    Haerdle, Wolfgang K.
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (02) : 489 - 502
  • [2] Dynamic semi-parametric factor model for functional expectiles
    Petra Burdejová
    Wolfgang K. Härdle
    [J]. Computational Statistics, 2019, 34 : 489 - 502
  • [3] Estimation of extreme multivariate expectiles with functional covariates
    Di Bernardino, Elena
    Laloe, Thomas
    Pakzad, Cambyse
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202
  • [4] Estimation risk for the VaR of portfolios driven by semi-parametric multivariate models
    Francq, Christian
    Zakoian, Jean-Michel
    [J]. JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 381 - 401
  • [5] Semi-parametric estimation for conditional independence multivariate finite mixture models
    Chauveau, Didier
    Hunter, David R.
    Levine, Michael
    [J]. STATISTICS SURVEYS, 2015, 9 : 1 - 31
  • [6] Semi-parametric estimation of shifts
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Maza, Elie
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 616 - 640
  • [7] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Wendy Ling Shinyie
    Noriszura Ismail
    Abdul Aziz Jemain
    [J]. Water Resources Management, 2013, 27 : 2325 - 2352
  • [8] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Shinyie, Wendy Ling
    Ismail, Noriszura
    Jemain, Abdul Aziz
    [J]. WATER RESOURCES MANAGEMENT, 2013, 27 (07) : 2325 - 2352
  • [9] SEMI-PARAMETRIC ESTIMATION OF INEQUALITY MEASURES
    Kpanzou, T. A.
    de Wet, T.
    Neethling, A.
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2013, 47 (01) : 33 - 48
  • [10] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373