Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models

被引:27
|
作者
Wey, Andrew [1 ]
Connett, John
Rudser, Kyle
机构
[1] Univ Hawaii, Honolulu, HI 96815 USA
关键词
Bias-variance trade-off; Brier score; Cross-validation; Stacked regressions; Survival ensembles; Survival prediction;
D O I
10.1093/biostatistics/kxv001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For estimating conditional survival functions, non-parametric estimators can be preferred to parametric and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when misspecified, parametric and semi-parametric estimators can possess better operating characteristics in small sample sizes due to smaller variance than non-parametric estimators. Fundamentally, this is a bias-variance trade-off situation in that the sample size is not large enough to take advantage of the low bias of non-parametric estimation. Stacked survival models estimate an optimally weighted combination of models that can span parametric, semi-parametric, and non-parametric models by minimizing prediction error. An extensive simulation study demonstrates that stacked survival models consistently perform well across a wide range of scenarios by adaptively balancing the strengths and weaknesses of individual candidate survival models. In addition, stacked survival models perform as well as or better than the model selected through cross-validation. Finally, stacked survival models are applied to a well-known German breast cancer study.
引用
收藏
页码:537 / 549
页数:13
相关论文
共 50 条
  • [1] A comparison of parametric and semi-parametric survival models with artificial neural networks
    Mokarram, Reza
    Emadi, Mahdi
    Rad, Arezou Habibi
    Nooghabi, Mahdi Jabbari
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) : 738 - 746
  • [2] Parametric, semi-parametric and non-parametric models of telecommunications demand - An investigation of residential calling patterns
    Heitfield, E
    Levy, A
    [J]. INFORMATION ECONOMICS AND POLICY, 2001, 13 (03) : 311 - 329
  • [3] A comparison of parametric, semi-parametric, and non-parametric approaches to selectivity in age-structured assessment models
    Thorson, James T.
    Taylor, Ian G.
    [J]. FISHERIES RESEARCH, 2014, 158 : 74 - 83
  • [4] Non-parametric and semi-parametric asset pricing
    Erdos, Peter
    Ormos, Mihaly
    Zibriczky, David
    [J]. ECONOMIC MODELLING, 2011, 28 (03) : 1150 - 1162
  • [5] Cumulative estimation in semi-parametric models - (Non-parametric estimator base for a general weight function)
    Hu, HC
    Sun, HY
    [J]. SURVEY REVIEW, 2005, 38 (296) : 158 - 164
  • [6] PARAMETRIC AND NON-PARAMETRIC SURVIVAL MODELS FOR "TIME TO FAILURE" OF WATER PIPELINES: CASE STUDY
    Asnaashari, Ahmad
    Shahrour, Isam
    Gharabaghi, Bahram
    McBean, Edward
    [J]. IPC2008: PROCEEDINGS OF THE ASME INTERNATIONAL PIPELINE CONFERENCE - 2008, VOL 4, 2009, : 305 - 310
  • [7] Non-parametric, semi-parametric, and machine learning models for river temperature frequency analysis at ungauged basins
    Souaissi, Zina
    Ouarda, Taha B. M. J.
    St-Hilaire, Andre
    [J]. ECOLOGICAL INFORMATICS, 2023, 75
  • [8] Semi-parametric and Non-parametric Term Weighting for Information Retrieval
    Metzler, Donald
    Zaragoza, Hugo
    [J]. ADVANCES IN INFORMATION RETRIEVAL THEORY, 2009, 5766 : 42 - 53
  • [9] ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
    AL-Adilee, Reem Tallal Kamil
    Aboudi, Emad Hazim
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1963 - 1972
  • [10] Density estimation using non-parametric and semi-parametric mixtures
    Wang, Yong
    Chee, Chew-Seng
    [J]. STATISTICAL MODELLING, 2012, 12 (01) : 67 - 92