Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models

被引:27
|
作者
Wey, Andrew [1 ]
Connett, John
Rudser, Kyle
机构
[1] Univ Hawaii, Honolulu, HI 96815 USA
关键词
Bias-variance trade-off; Brier score; Cross-validation; Stacked regressions; Survival ensembles; Survival prediction;
D O I
10.1093/biostatistics/kxv001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For estimating conditional survival functions, non-parametric estimators can be preferred to parametric and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when misspecified, parametric and semi-parametric estimators can possess better operating characteristics in small sample sizes due to smaller variance than non-parametric estimators. Fundamentally, this is a bias-variance trade-off situation in that the sample size is not large enough to take advantage of the low bias of non-parametric estimation. Stacked survival models estimate an optimally weighted combination of models that can span parametric, semi-parametric, and non-parametric models by minimizing prediction error. An extensive simulation study demonstrates that stacked survival models consistently perform well across a wide range of scenarios by adaptively balancing the strengths and weaknesses of individual candidate survival models. In addition, stacked survival models perform as well as or better than the model selected through cross-validation. Finally, stacked survival models are applied to a well-known German breast cancer study.
引用
收藏
页码:537 / 549
页数:13
相关论文
共 50 条
  • [41] Efficiency of profile likelihood in semi-parametric models
    Hirose, Yuichi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (06) : 1247 - 1275
  • [42] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    [J]. TEST, 2021, 30 : 980 - 1003
  • [43] Unified variable selection in semi-parametric models
    Terry, William
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Karmaus, Wilfried
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (06) : 2821 - 2831
  • [44] Semi-parametric models of spatial market integration
    Barry K. Goodwin
    Matthew T. Holt
    Jeffrey P. Prestemon
    [J]. Empirical Economics, 2021, 61 : 2335 - 2361
  • [45] KSPM: A Package For Kernel Semi-Parametric Models
    Schramm, Catherine
    Jacquemont, Sebastien
    Oualkacha, Karim
    Labbe, Aurelie
    Greenwood, Celia M. T.
    [J]. R JOURNAL, 2020, 12 (02): : 82 - 106
  • [46] Semi-parametric transformation boundary regression models
    Neumeyer, Natalie
    Selk, Leonie
    Tillier, Charles
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1287 - 1315
  • [47] Mixtures of Semi-Parametric Generalised Linear Models
    Millard, Salomon M.
    Kanfer, Frans H. J.
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [48] Specification testing in semi-parametric transformation models
    Kloodt, Nick
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    [J]. TEST, 2021, 30 (04) : 980 - 1003
  • [49] Identification of semi-parametric hybrid process models
    Yang, Aidong
    Martin, Elaine
    Morris, Julian
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 63 - 70
  • [50] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529