Specification testing in semi-parametric transformation models

被引:1
|
作者
Kloodt, Nick [1 ]
Neumeyer, Natalie [1 ]
Van Keilegom, Ingrid [2 ]
机构
[1] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
[2] Katholieke Univ Leuven, Res Ctr Operat Res & Stat ORSTAT, Leuven, Belgium
基金
欧洲研究理事会;
关键词
Bootstrap; Goodness-of-fit test; Nonparametric regression; Nonparametric transformation estimator; Parametric transformation class; U-statistics;
D O I
10.1007/s11749-021-00756-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In transformation regression models, the response is transformed before fitting a regression model to covariates and transformed response. We assume such a model where the errors are independent from the covariates and the regression function is modeled nonparametrically. We suggest a test for goodness-of-fit of a parametric transformation class based on a distance between a nonparametric transformation estimator and the parametric class. We present asymptotic theory under the null hypothesis of validity of the semi-parametric model and under local alternatives. A bootstrap algorithm is suggested in order to apply the test. We also consider relevant hypotheses to distinguish between large and small distances of the parametric transformation class to the 'true' transformation.
引用
收藏
页码:980 / 1003
页数:24
相关论文
共 50 条
  • [1] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    [J]. TEST, 2021, 30 : 980 - 1003
  • [2] Semi-parametric specification tests for discrete probability models
    Fang, Y
    [J]. JOURNAL OF RISK AND INSURANCE, 2003, 70 (01) : 73 - 84
  • [3] Semi-parametric transformation boundary regression models
    Natalie Neumeyer
    Leonie Selk
    Charles Tillier
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 1287 - 1315
  • [4] Semi-parametric transformation boundary regression models
    Neumeyer, Natalie
    Selk, Leonie
    Tillier, Charles
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1287 - 1315
  • [5] Semi-parametric specification tests for mixing distributions
    Fang, Yue
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (05) : 2829 - 2839
  • [6] Testing Hypotheses on the Innovations Distribution in Semi-Parametric Conditional Volatility Models*
    Francq, Christian
    Zakoian, Jean-Michel
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (05) : 1443 - 1482
  • [7] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [8] Variable selection in semi-parametric models
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Holloway, John
    Karmaus, Wilfried
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1736 - 1752
  • [9] Semi-parametric adjustment to computer models
    Wang, Yan
    Tuo, Rui
    [J]. STATISTICS, 2020, 54 (06) : 1255 - 1275
  • [10] Semi-Parametric Models - An Application in Medicine
    Pereira, J. A.
    Pereira, A. L.
    Oliveira, T. A.
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293