Semi-parametric transformation boundary regression models

被引:0
|
作者
Natalie Neumeyer
Leonie Selk
Charles Tillier
机构
[1] University of Hamburg,Department of Mathematics
关键词
Box–Cox transformations; Frontier estimation; Minimum distance estimation; Local constant approximation; Boundary models; Nonparametric regression; Yeo–Johnson transformations;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of nonparametric regression models with one-sided errors, we consider parametric transformations of the response variable in order to obtain independence between the errors and the covariates. In view of estimating the transformation parameter, we use a minimum distance approach and show the uniform consistency of the estimator under mild conditions. The boundary curve, i.e., the regression function, is estimated applying a smoothed version of a local constant approximation for which we also prove the uniform consistency. We deal with both cases of random covariates and deterministic (fixed) design points. To highlight the applicability of the procedures and to demonstrate their performance, the small sample behavior is investigated in a simulation study using the so-called Yeo–Johnson transformations.
引用
收藏
页码:1287 / 1315
页数:28
相关论文
共 50 条
  • [1] Semi-parametric transformation boundary regression models
    Neumeyer, Natalie
    Selk, Leonie
    Tillier, Charles
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1287 - 1315
  • [2] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    [J]. TEST, 2021, 30 : 980 - 1003
  • [3] Specification testing in semi-parametric transformation models
    Kloodt, Nick
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    [J]. TEST, 2021, 30 (04) : 980 - 1003
  • [4] Measurement errors in semi-parametric generalised regression models
    Hattab, Mohammad W.
    Ruppert, David
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (04) : 344 - 363
  • [5] Semi-parametric nonlinear regression and transformation using functional networks
    Castillo, Enrique
    Hadi, Ali S.
    Lacruz, Beatriz
    Pruneda, Rosa E.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2129 - 2157
  • [6] A new algorithm for fitting semi-parametric variance regression models
    Robledo, Kristy P.
    Marschner, Ian C.
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (04) : 2313 - 2335
  • [7] Variable selection in finite mixture of semi-parametric regression models
    Ormoz, Ehsan
    Eskandari, Farzad
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (03) : 695 - 711
  • [8] Interpretable semi-parametric regression models with defined error bounds
    Otte, Clemens
    [J]. NEUROCOMPUTING, 2014, 143 : 1 - 6
  • [9] A new algorithm for fitting semi-parametric variance regression models
    Kristy P. Robledo
    Ian C. Marschner
    [J]. Computational Statistics, 2021, 36 : 2313 - 2335
  • [10] A goodness-of-fit test for parametric and semi-parametric models in multiresponse regression
    Chen, Song Xi
    Van Keilegom, Ingrid
    [J]. BERNOULLI, 2009, 15 (04) : 955 - 976