A semi-parametric stochastic generator for bivariate extreme events

被引:8
|
作者
Marcon, Giulia [1 ]
Naveau, Philippe [2 ]
Padoan, Simone [1 ]
机构
[1] Bocconi Univ Milan, Dept Decis Sci, Via Roentgen 1, I-20136 Milan, Italy
[2] Lab Sci Climat & Environm, Orme Merisiers Bat 701 CE Saclay, F-91191 Gif Sur Yvette, France
来源
STAT | 2017年 / 6卷 / 01期
关键词
angular measure; Bernstein polynomials; bivariate extreme-value distribution; extremal dependence; generalized extreme-value distribution; Pickands dependence function; Poisson point process; wind speed; REPRESENTATION;
D O I
10.1002/sta4.145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The analysis of multiple extreme values aims to describe the stochastic behaviour of observations in the joint upper tail of a distribution function. For instance, being able to simulate multivariate extreme events is convenient for end users who need a large number of random replications of extremes as input of a given complex system to test its sensitivity. The simulation of multivariate extremes is often based on the assumption that the dependence structure, the so-called extremal dependence function, is described by a specific parametric model. We propose a simulation method for sampling bivariate extremes, under the assumption that the extremal dependence function is semi-parametric. This yields a flexible tool that can be broadly applied in real-data analyses. With the aim of estimating the probability of belonging to some extreme sets, our methodology is examined via simulation and illustrated by an analysis of strong wind gusts in France. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:184 / 201
页数:18
相关论文
共 50 条
  • [1] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    [J]. Methodology and Computing in Applied Probability, 2023, 25
  • [2] Bivariate Semi-Parametric Model: Bayesian Inference
    Samanta, Debashis
    Kundu, Debasis
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [3] Semi-parametric bivariate polychotomous ordinal regression
    Donat, Francesco
    Marra, Giampiero
    [J]. STATISTICS AND COMPUTING, 2017, 27 (01) : 283 - 299
  • [4] Semi-parametric bivariate polychotomous ordinal regression
    Francesco Donat
    Giampiero Marra
    [J]. Statistics and Computing, 2017, 27 : 283 - 299
  • [5] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Wendy Ling Shinyie
    Noriszura Ismail
    Abdul Aziz Jemain
    [J]. Water Resources Management, 2013, 27 : 2325 - 2352
  • [6] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Shinyie, Wendy Ling
    Ismail, Noriszura
    Jemain, Abdul Aziz
    [J]. WATER RESOURCES MANAGEMENT, 2013, 27 (07) : 2325 - 2352
  • [7] Semi-parametric inference in a bivariate (multivariate) mixture model
    Leung, DHY
    Qin, J
    [J]. STATISTICA SINICA, 2006, 16 (01) : 153 - 163
  • [8] A BAYESIAN SEMI-PARAMETRIC MIXTURE MODEL FOR BIVARIATE EXTREME VALUE ANALYSIS WITH APPLICATION TO PRECIPITATION FORECASTING
    Tian, Yuan
    Reich, Brian J.
    [J]. STATISTICA SINICA, 2021, 31 (03) : 1619 - 1641
  • [9] A Bayesian semi-parametric bivariate failure time model
    Nieto-Barajas, Luis E.
    Walker, Stephen G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 6102 - 6113
  • [10] Semi-parametric estimation of multivariate extreme expectiles
    Beck, Nicholas
    Di Bernardino, Elena
    Mailhot, Melina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184